1
|
Kratzer TB, Bandi P, Freedman ND, Smith
RA, Travis WD, Jemal A and Siegel RL: Lung cancer statistics, 2023.
Cancer. 130:1330–1348. 2024. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025. View Article : Google Scholar : PubMed/NCBI
|
3
|
Denisenko TV, Budkevich IN and Zhivotovsky
B: Cell death-based treatment of lung adenocarcinoma. Cell Death
Dis. 9:1172018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wu SG and Shih JY: Management of acquired
resistance to EGFR TKI-targeted therapy in advanced non-small cell
lung cancer. Mol Cancer. 17:382018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lim SM, Syn NL, Cho BC and Soo RA:
Acquired resistance to EGFR targeted therapy in non-small cell lung
cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev.
65:1–10. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Imyanitov EN, Iyevleva AG and Levchenko
EV: Molecular testing and targeted therapy for Non-small cell lung
cancer: Current status and perspectives. Crit Rev Oncol Hematol.
157:1031942021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lamberti G, Andrini E, Sisi M, Rizzo A,
Parisi C, Di Federico A, Gelsomino F and Ardizzoni A: Beyond EGFR,
ALK and ROS1: Current evidence and future perspectives on newly
targetable oncogenic drivers in lung adenocarcinoma. Crit Rev Oncol
Hematol. 156:1031192020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xia L, Liu Y and Wang Y: PD-1/PD-L1
blockade therapy in advanced Non-Small-cell lung cancer: Current
status and future directions. Oncologist. 24 (Suppl 1):S31–S41.
2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mamdani H, Matosevic S, Khalid AB, Durm G
and Jalal SI: Immunotherapy in lung cancer: Current landscape and
future directions. Front Immunol. 13:8236182022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang S, Wang Y, Wu X, Yang L and Zhang X:
Patients outcomes in lung adenocarcinoma transforming to small-cell
lung cancer after tyrosine kinase inhibitor therapy. World J Surg
Oncol. 23:342025. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zha J, Li J, Yin H, Shen M and Xia Y:
TIMM23 overexpression drives NSCLC cell growth and survival by
enhancing mitochondrial function. Cell Death Dis. 16:1742025.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Leonetti A, Sharma S, Minari R, Perego P,
Giovannetti E and Tiseo M: Resistance mechanisms to osimertinib in
EGFR-mutated non-small cell lung cancer. Br J Cancer. 121:725–737.
2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chao YL and Pecot CV: Targeting
epigenetics in lung cancer. Cold Spring Harb Perspect Med.
11:a0380002021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dong N, Shi L, Wang DC, Chen C and Wang X:
Role of epigenetics in lung cancer heterogeneity and clinical
implication. Semin Cell Dev Biol. 64:18–25. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu Y, Hu X, Han C, Wang L, Zhang X, He X
and Lu X: Targeting tumor suppressor genes for cancer therapy.
Bioessays. 37:1277–1286. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Moore LD, Le T and Fan G: DNA methylation
and its basic function. Neuropsychopharmacology. 38:23–38. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bajbouj K, Al-Ali A, Ramakrishnan RK,
Saber-Ayad M and Hamid Q: Histone modification in NSCLC: Molecular
mechanisms and therapeutic targets. Int J Mol Sci. 22:117012021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Laugesen A, Hojfeldt JW and Helin K:
Molecular mechanisms directing PRC2 recruitment and H3K27
methylation. Mol Cell. 74:8–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Belinsky SA: Gene-promoter
hypermethylation as a biomarker in lung cancer. Nat Rev Cancer.
4:707–717. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang X, Shi W, Huang X, Hu L, Wang J,
Zhang F, Wang Y and Huang K: Low-level EFCAB1 promoted progress by
upregulated DNMT3B and could be as a potential biomarker in lung
adenocarcinoma. J Clin Lab Anal. 36:e241662022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tan M, Wu J and Cai Y: Suppression of Wnt
signaling by the miR-29 family is mediated by demethylation of
WIF-1 in non-small-cell lung cancer. Biochem Biophys Res Commun.
438:673–679. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Duan R, Du W and Guo W: EZH2: A novel
target for cancer treatment. J Hematol Oncol. 13:1042020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Gao M, Li Y, Cao P, Liu H, Chen J and Kang
S: Exploring the therapeutic potential of targeting polycomb
repressive complex 2 in lung cancer. Front Oncol. 13:12162892023.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Shin DS, Park K, Garon E and Dubinett S:
Targeting EZH2 to overcome the resistance to immunotherapy in lung
cancer. Semin Oncol. 49:306–318. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Werner H, Dimou L, Klugmann M, Pfeiffer S
and Nave KA: Multiple splice isoforms of proteolipid M6B in neurons
and oligodendrocytes. Mol Cell Neurosci. 18:593–605. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Werner HB, Kramer-Albers EM, Strenzke N,
Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P,
Möbius W, Moser T, Griffiths IR and Nave KA: A critical role for
the cholesterol-associated proteolipids PLP and M6B in myelination
of the central nervous system. Glia. 61:567–586. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Honda A, Ito Y, Takahashi-Niki K,
Matsushita N, Nozumi M, Tabata H, Takeuchi K and Igarashi M:
Extracellular signals induce glycoprotein M6a clustering of lipid
rafts and associated signaling molecules. J Neurosci. 37:4046–4064.
2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu Y, Wang Q, Xia Y, Xiong X, Weng S, Ni
H, Ye Y, Chen L, Lin J, Chen Y, et al: Evaluation of MiR-1908-3p as
a novel serum biomarker for breast cancer and analysis its
oncogenic function and target genes. BMC Cancer. 20:6442020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
He S, Huang Z, Li X, Ding Y, Sheng H, Liu
B and Jia Z: GPM6B inhibit PCa proliferation by blocking prostate
cancer cell serotonin absorptive capacity. Dis Markers.
2020:88107562020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Miao Z, Geng L, Xu L, Ye Y, Wu C, Tian W
and Liu N: Integrated analysis reveals prognostic value and
mesenchymal identity suppression by glycoprotein M6B in glioma. Am
J Transl Res. 14:3052–3065. 2022.PubMed/NCBI
|
31
|
Clough E and Barrett T: The gene
expression omnibus database. Methods Mol Biol. 1418:93–110. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Tomczak K, Czerwinska P and Wiznerowicz M:
The cancer genome atlas (TCGA): An immeasurable source of
knowledge. Contemp Oncol (Pozn). 19:A68–A77. 2015.PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Li LT, Jiang G, Chen Q and Zheng JN: Ki67
is a promising molecular target in the diagnosis of cancer
(review). Mol Med Rep. 11:1566–1572. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Menon SS, Guruvayoorappan C, Sakthivel KM
and Rasmi RR: Ki-67 protein as a tumour proliferation marker. Clin
Chim Acta. 491:39–45. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jurikova M, Danihel L, Polak S and Varga
I: Ki67, PCNA, and MCM proteins: Markers of proliferation in the
diagnosis of breast cancer. Acta Histochem. 118:544–552. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Han T, Zhan W, Gan M, Liu F, Yu B, Chin YE
and Wang JB: Phosphorylation of glutaminase by PKCepsilon is
essential for its enzymatic activity and critically contributes to
tumorigenesis. Cell Res. 28:655–669. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu J, Zhao Q, Chen S, Xu H, Zhang R, Cai
D, Gao Y, Peng W, Chen X, Yuan S, et al: NSUN4-mediated m5C
modification of circERI3 promotes lung cancer development by
altering mitochondrial energy metabolism. Cancer Lett.
605:2172662024. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xu Y, Hu Y, Xu T, Yan K, Zhang T, Li Q,
Chang F, Guo X, Peng J, Li M, et al: RNF8-mediated regulation of
Akt promotes lung cancer cell survival and resistance to DNA
damage. Cell Rep. 37:1098542021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ren Y, Yu G, Shi C, Liu L, Guo Q, Han C,
Zhang D, Zhang L, Liu B, Gao H, et al: Majorbio cloud: A One-stop,
comprehensive bioinformatic platform for multiomics analyses.
Imeta. 1:e122022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu Y, Su Z, Tavana O and Gu W:
Understanding the complexity of p53 in a new era of tumor
suppression. Cancer Cell. 42:946–967. 2024. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhu M, Han Y, Gu T, Wang R, Si X, Kong D,
Zhao P, Wang X, Li J, Zhai X, et al: Class I HDAC inhibitors
enhance antitumor efficacy and persistence of CAR-T cells by
activation of the Wnt pathway. Cell Rep. 43:1140652024. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ling H, Li Y, Peng C, Yang S and Seto E:
HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor
resistance via upregulating SPARC expression. NAR Cancer.
6:zcae0182024. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Hendriks LEL, Remon J, Faivre-Finn C,
Garassino MC, Heymach JV, Kerr KM, Tan DSW, Veronesi G and Reck M:
Non-small-cell lung cancer. Nat Rev Dis Primers. 10:712024.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Copur MS, Crockett D, Gauchan D, Ramaekers
R and Mleczko K: Molecular testing guideline for the selection of
patients with lung cancer for targeted therapy. J Clin Oncol.
36:20062018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zito Marino F, Bianco R, Accardo M, Ronchi
A, Cozzolino I, Morgillo F, Rossi G and Franco R: Molecular
heterogeneity in lung cancer: From mechanisms of origin to clinical
implications. Int J Med Sci. 16:981–989. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Brown FR III, Beck JC, Niebyl JR and Singh
I: Effect of proteolipid protein on central nervous system myelin
membrane fluidity. Neurosci Lett. 59:149–154. 1985. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mobius W, Patzig J, Nave KA and Werner HB:
Phylogeny of proteolipid proteins: Divergence, constraints, and the
evolution of novel functions in myelination and neuroprotection.
Neuron Glia Biol. 4:111–127. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sapirstein VS, Nolan C, Stern R, Ciocci M
and Masur SK: Identification of the plasma membrane proteolipid
protein as a constituent of brain coated vesicles and synaptic
plasma membrane. J Neurochem. 51:925–933. 1988. View Article : Google Scholar : PubMed/NCBI
|
51
|
Fernandez ME, Alfonso J, Brocco MA and
Frasch AC: Conserved cellular function and Stress-mediated
regulation among members of the proteolipid protein family. J
Neurosci Res. 88:1298–1308. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Vouyiouklis DA, Werner H, Griffiths IR,
Stewart GJ, Armin-Nave K and Thomson CE: Molecular cloning and
transfection studies of M6b-2, a novel splice variant of a member
of the PLP-DM20/M6 gene family. J Neurosci Res. 52:633–640. 1998.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Charfi C, Edouard E and Rassart E:
Identification of GPM6A and GPM6B as potential new human lymphoid
leukemia-associated oncogenes. Cell Oncol (Dordr). 37:179–191.
2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yan M, Rerko RM, Platzer P, Dawson D,
Willis J, Tong M, Lawrence E, Lutterbaugh J, Lu S, Willson JK, et
al: 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene
antagonist, is a TGF-beta-induced suppressor of human
gastrointestinal cancers. Proc Natl Acad Sci USA. 101:17468–17473.
2004. View Article : Google Scholar : PubMed/NCBI
|
55
|
Gee JR, Montoya RG, Khaled HM, Sabichi AL
and Grossman HB: Cytokeratin 20, AN43, PGDH, and COX-2 expression
in transitional and squamous cell carcinoma of the bladder. Urol
Oncol. 21:266–270. 2003. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ding Y, Tong M, Liu S, Moscow JA and Tai
HH: NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH)
behaves as a tumor suppressor in lung cancer. Carcinogenesis.
26:65–72. 2005. View Article : Google Scholar : PubMed/NCBI
|
57
|
Sun L, Suo C, Zhang T, Shen S, Gu X, Qiu
S, Zhang P, Wei H, Ma W, Yan R, et al: ENO1 promotes liver
carcinogenesis through YAP1-dependent arachidonic acid metabolism.
Nat Chem Biol. 19:1492–1503. 2023. View Article : Google Scholar : PubMed/NCBI
|
58
|
Shu L, Li X, Liu Z, Li K, Shi A, Tang Y,
Zhao L, Huang L, Zhang Z, Zhang D, et al: Bile exosomal
miR-182/183-5p increases cholangiocarcinoma stemness and
progression by targeting HPGD and increasing PGE2 generation.
Hepatology. 79:307–322. 2023. View Article : Google Scholar : PubMed/NCBI
|
59
|
Kusumoto S, Ikeda JI, Kurashige M,
Maeno-Fujinami E, Tahara S, Matsui T, Nojima S, Okuzaki D and Morii
E: Tumor cell plasticity in endometrioid carcinoma is regulated by
neuronal membrane glycoprotein M6-b. Oncol Lett. 25:452023.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Ruiz-Losada M, Gonzalez R, Peropadre A,
Gil-Gálvez A, Tena JJ, Baonza A and Estella C: Coordination between
cell proliferation and apoptosis after DNA damage in Drosophila.
Cell Death Differ. 29:832–845. 2022. View Article : Google Scholar : PubMed/NCBI
|
61
|
Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi
Y and Cao L: DNA methylation, its mediators and genome integrity.
Int J Biol Sci. 11:604–617. 2015. View Article : Google Scholar : PubMed/NCBI
|
62
|
Gallinari P, Di Marco S, Jones P, Pallaoro
M and Steinkuhler C: HDACs, histone deacetylation and gene
transcription: From molecular biology to cancer therapeutics. Cell
Res. 17:195–211. 2007. View Article : Google Scholar : PubMed/NCBI
|
63
|
Yu J, Qin B, Moyer AM, Nowsheen S, Liu T,
Qin S, Zhuang Y, Liu D, Lu SW, Kalari KR, et al: DNA
methyltransferase expression in triple-negative breast cancer
predicts sensitivity to decitabine. J Clin Invest. 128:2376–2388.
2018. View Article : Google Scholar : PubMed/NCBI
|
64
|
Wong KK, Lawrie CH and Green TM: Oncogenic
roles and inhibitors of DNMT1, DNMT3A, and DNMT3B in acute myeloid
leukaemia. Biomark Insights. 14:11772719198464542019. View Article : Google Scholar : PubMed/NCBI
|
65
|
Chang J, Varghese DS, Gillam MC, Peyton M,
Modi B, Schiltz RL, Girard L and Martinez ED: Differential response
of cancer cells to HDAC inhibitors trichostatin A and depsipeptide.
Br J Cancer. 106:116–125. 2012. View Article : Google Scholar : PubMed/NCBI
|
66
|
Zahnow CA, Topper M, Stone M,
Murray-Stewart T, Li H, Baylin SB and Casero RA Jr: Inhibitors of
DNA methylation, histone deacetylation, and histone demethylation:
A perfect combination for cancer therapy. Adv Cancer Res.
130:55–111. 2016. View Article : Google Scholar : PubMed/NCBI
|
67
|
Soflaei SS, Momtazi-Borojeni AA, Majeed M,
Derosa G, Maffioli P and Sahebkar A: Curcumin: A natural Pan-HDAC
inhibitor in cancer. Curr Pharm Des. 24:123–129. 2018. View Article : Google Scholar : PubMed/NCBI
|
68
|
Li Y and Seto E: HDACs and HDAC inhibitors
in cancer development and therapy. Cold Spring Harb Perspect Med.
6:a0268312016. View Article : Google Scholar : PubMed/NCBI
|