
MicroRNAs: Novel clinical biomarkers for cancer radiotherapy (Review)
- Authors:
- Junseok Park
- Mi Eun Kim
- Jun Sik Lee
-
Affiliations: Department of Biological Science, Immunology Research Lab, BrainKorea21‑Four Educational Research Group for Age‑Associated Disorder Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452, Republic of Korea - Published online on: July 10, 2025 https://doi.org/10.3892/mmr.2025.13619
- Article Number: 254
-
Copyright: © Park et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Kim T and Croce CM: MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med. 55:1314–1321. 2023. View Article : Google Scholar : PubMed/NCBI | |
Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM and Herrera LA: The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 20:409–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chawra HS, Agarwal M, Mishra A, Chandel SS, Singh RP, Dubey G, Kukreti N and Singh M: MicroRNA-21′s role in PTEN suppression and PI3K/AKT activation: Implications for cancer biology. Pathol Res Pract. 254:1550912024. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Imani S, Wu MY and Wu RC: MicroRNA-34 family in cancers: Role, mechanism, and therapeutic potential. Cancers (Basel). 15:47232023. View Article : Google Scholar : PubMed/NCBI | |
Jame-Chenarboo F, Ng HH, Macdonald D and Mahal LK: High-throughput analysis reveals miRNA upregulating α-2,6-sialic acid through direct miRNA-mRNA interactions. ACS Cent Sci. 8:1527–1536. 2022. View Article : Google Scholar : PubMed/NCBI | |
Laitinen P, Väänänen MA, Kolari IL, Mäkinen PI, Kaikkonen MU, Weinberg MS, Morris KV, Korhonen P, Malm T, Ylä-Herttuala S, et al: Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS One. 17:e02659482022. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Cheng C, Yuan X, He JT, Pan QH and Sun FY: microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 7:602–610. 2014.PubMed/NCBI | |
Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L and Negrini M: MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 27:5651–5661. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aqeilan RI, Calin GA and Croce CM: miR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death Differ. 17:215–220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Poli V, Secli L and Avalle L: The microrna-143/145 cluster in tumors: A matter of where and when. Cancers (Basel). 17:7082020. View Article : Google Scholar | |
Lacombe J and Zenhausern F: Emergence of miR-34a in radiation therapy. Crit Rev Oncol Hematol. 109:69–78. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M and Ghafouri-Fard S: MicroRNA: A signature for cancer progression. Biomed Pharmacother. 138:1115282021. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar : PubMed/NCBI | |
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM and Voinea SC: miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells. 9:2762020. View Article : Google Scholar : PubMed/NCBI | |
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W and Tuschl T: Identification of tissue-specific microRNAs from mouse. Current Biol. 12:735–739. 2002. View Article : Google Scholar : PubMed/NCBI | |
Petrou L and Ladame S: On-chip miRNA extraction platforms: Recent technological advances and implications for next generation point-of-care nucleic acid tests. Lab Chip. 22:463–475. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, Wang X, Luo Z, Wang J, Liu S, et al: microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 19:7382019. View Article : Google Scholar : PubMed/NCBI | |
Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, et al: Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ojha R, Nandani R, Pandey RK, Mishra A and Prajapati VK: Emerging role of circulating microRNA in the diagnosis of human infectious diseases. J Cell Physiol. 234:1030–1043. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oses M, Margareto Sanchez J, Portillo MP, Aguilera CM and Labayen I: Circulating miRNAs as biomarkers of obesity and obesity-associated comorbidities in children and adolescents: A systematic review. Nutrients. 11:28902019. View Article : Google Scholar : PubMed/NCBI | |
Wang L and Zhang L: Circulating exosomal miRNA as diagnostic biomarkers of neurodegenerative diseases. Front Mol Neurosci. 13:532020. View Article : Google Scholar : PubMed/NCBI | |
Port M, Hérodin F, Valente M, Drouet M, Ostheim P, Majewski M and Abend M: Persistent mRNA and miRNA expression changes in irradiated baboons. Sci Rep. 8:153532018. View Article : Google Scholar : PubMed/NCBI | |
Port M, Herodin F, Valente M, Drouet M, Ullmann R, Doucha-Senf S, Lamkowski A, Majewski M and Abend M: MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons. PLoS One. 11:e01653072016. View Article : Google Scholar : PubMed/NCBI | |
Halimi M, Shahabi A, Moslemi D, Parsian H, Asghari SM, Sariri R, Yeganeh F and Zabihi E: Human serum miR-34a as an indicator of exposure to ionizing radiation. Radiat Environ Biophys. 55:423–429. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dinh TK, Fendler W, Chałubińska-Fendler J, Acharya SS, O'Leary C, Deraska PV, D'Andrea AD, Chowdhury D and Kozono D: Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer. Radiat Oncol. 11:612016. View Article : Google Scholar : PubMed/NCBI | |
Rezaeian AH, Khanbabaei H and Calin GA: Therapeutic potential of the miRNA-ATM axis in the management of tumor radioresistance. Cancer Res. 80:139–150. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mao A, Liu Y, Zhang H, Di C and Sun C: microRNA expression and biogenesis in cellular response to ionizing radiation. DNA Cell Biol. 33:667–679. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wan G, Mathur R, Hu X, Zhang X and Lu X: miRNA response to DNA damage. Trends Biochem Sci. 36:478–484. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu ZL, Wang H, Liu J and Wang ZX: MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem. 372:35–45. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wan G, Berger FG, He X and Lu X: The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell. 41:371–383. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moertl S, Mutschelknaus L, Heider T and Atkinson MJ: MicroRNAs as novel elements in personalized radiotherapy. Transl Cancer Res. 5 (Suppl 6):S1262–S1269. 2016. View Article : Google Scholar | |
Zhao L, Bode AM, Cao Y and Dong Z: Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis. 33:2220–2227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Du L, Nagabayashi G, Seeger RC and Gatti RA: ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci USA. 107:1506–1511. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, Bentwich Z, Lieberman J and Chowdhury D: miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 16:492–498. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo YY, Mao H, Hao C, Olson JJ, Curran WJ and Wang Y: Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One. 5:e113972010. View Article : Google Scholar : PubMed/NCBI | |
Crosby ME, Kulshreshtha R, Ivan M and Glazer PM: MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 69:1221–1229. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z and Chun-Sheng K: MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 10:3672010. View Article : Google Scholar : PubMed/NCBI | |
Stephen YC and Joseph L: MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle. 9:1072–1083. 2010. View Article : Google Scholar | |
Yu L, Yang Y, Hou J, Zhai C, Song Y, Zhang Z, Qiu L and Jia X: MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol Rep. 34:1845–1852. 2015. View Article : Google Scholar : PubMed/NCBI | |
Buffa FM, Camps C, Winchester L, Snell CE, Gee HE, Sheldon H, Taylor M, Harris AL and Ragoussis J: microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 71:5635–5645. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Liu C, Gao F, Mitchel RE, Zhao L, Yang Y, Lei J and Cai J: miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem. 114:606–615. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song C, Liu LZ, Pei XQ, Liu X, Yang L, Ye F and Xie X, Chen J, Tang H and Xie X: miR-200c inhibits breast cancer proliferation by targeting KRAS. Oncotarget. 6:34968–34978. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Santis C and Götte M: The role of microRNA Let-7d in female malignancies and diseases of the female reproductive tract. Int J Mol Sci. 22:73592021. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Ding C, Zhang H and Gao J: Let-7 miRNAs sensitize breast cancer stem cells to radiation-induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway. Mol Med Rep. 14:3285–3292. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pajic M, Froio D, Daly S, Doculara L, Millar E, Graham PH, Drury A, Steinmann A, de Bock CE, Boulghourjian A, et al: miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense. Cancer Res. 78:501–515. 2018. View Article : Google Scholar : PubMed/NCBI | |
Numakura K, Kobayashi M, Muto Y, Sato H, Sekine Y, Sobu R, Aoyama Y, Takahashi Y, Okada S, Sasagawa H, et al: The current trend of radiation therapy for patients with localized prostate cancer. Curr Oncol. 30:8092–8110. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, Li X and Hu B: A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 361:121–127. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al: miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xi M, Cheng L, Hua W, Zhou YL, Gao QL, Yang JX and Qi SY: MicroRNA-95-3p promoted the development of prostatic cancer via regulating DKK3 and activating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 23:1002–1011. 2019.PubMed/NCBI | |
Ni J, Bucci J, Chang L, Malouf D, Graham P and Li Y: Targeting MicroRNAs in prostate cancer radiotherapy. Theranostics. 7:3243–3259. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sang Z, Jiang X, Guo L and Yin G: MicroRNA-9 suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogen-activated protein kinase kinase kinase 3 expression. Mol Med Rep. 19:4407–4418. 2019.PubMed/NCBI | |
Xu CG, Yang MF, Fan JX and Wang W: MiR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1. Eur Rev Med Pharmacol Sci. 20:1501–1508. 2016.PubMed/NCBI | |
Xin M, Qiao Z, Li J, Liu J, Song S, Zhao X, Miao P, Tang T, Wang L, Liu W, et al: miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: Evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget. 7:44252–44265. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li B, Shi XB, Nori D, Chao CK, Chen AM, Valicenti R and White Rde V: Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 71:567–574. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mao A, Zhao Q, Zhou X, Sun C, Si J, Zhou R, Gan L and Zhang H: MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Sci Rep. 6:273462016. View Article : Google Scholar : PubMed/NCBI | |
Wagner S, Ngezahayo A, Murua Escobar H and Nolte I: Role of miRNA let-7 and its major targets in prostate cancer. Biomed Res Int. 2014:3763262014. View Article : Google Scholar : PubMed/NCBI | |
Li WJ, Liu X, Dougherty EM and Tang DG: MicroRNA-34a, prostate cancer stem cells, and therapeutic development. Cancers (Basel). 14:45382022. View Article : Google Scholar : PubMed/NCBI | |
Abdelaal AM, Sohal IS, Iyer SG, Sudarshan K, Orellana EA, Ozcan KE, Dos Santos AP, Low PS and Kasinski AL: Selective targeting of chemically modified miR-34a to prostate cancer using a small molecule ligand and an endosomal escape agent. Mol Ther Nucleic Acids. 35:1021932024. View Article : Google Scholar : PubMed/NCBI | |
Guan H, You Z, Wang C, Fang F, Peng R, Mao L, Xu B and Chen M: MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Med. 8:1474–1485. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kozak J, Jonak K and Maciejewski R: The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed Pharmacother. 125:1100372020. View Article : Google Scholar : PubMed/NCBI | |
Konoshenko MY, Bryzgunova OE and Laktionov PP: miRNAs and radiotherapy response in prostate cancer. Andrology. 9:529–545. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Liang C, Miao C, Wang S, Su S, Shao P, Liu B, Bao M, Zhu J, Xu A, et al: MicroRNA-126 inhibits proliferation and metastasis in prostate cancer via regulation of ADAM9. Oncol Lett. 15:9051–9060. 2018.PubMed/NCBI | |
Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y and Dahiya R: Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res. 17:5287–5298. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang XC, Du LQ, Tian LL, Wu HL, Jiang XY, Zhang H, Li DG, Wang YY, Wu HY, She Y, et al: Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of non-small cell lung cancer. Lung Cancer. 72:92–99. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tian F, Han Y, Yan X, Zhong D, Yang G, Lei J, Li X and Wang X: Upregulation of microrna-451 increases the sensitivity of A549 cells to radiotherapy through enhancement of apoptosis. Thorac Cancer. 7:226–231. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L and Wang D: MicroRNA-128-b regulates epidermal growth factor receptor expression in non-small cell lung cancer. Mol Med Rep. 20:4803–4810. 2019.PubMed/NCBI | |
Liu JK, Liu HF, Ding Y and Gao GD: Predictive value of microRNA let-7a expression for efficacy and prognosis of radiotherapy in patients with lung cancer brain metastasis: A case-control study. Medicine (Baltimore). 97:e128472018. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Hu JX, Hao RM, Zhang Q, Guo JQ, Li YJ, Xie N, Liu LY, Wang PY, Zhang C and Xie SY: Induction of microRNA-let-7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncol Rep. 40:1843–1854. 2018.PubMed/NCBI | |
Fu J, Jiang M, Zhang M, Zhang J, Wang Y, Xiang S, Xu X, Ye Q and Song H: MiR-495 functions as an adjuvant to radiation therapy by reducing the radiation-induced bystander effect. Acta Biochim Biophys Sin (Shanghai). 48:1026–1033. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng HE, Wang G, Song J, Liu Y, Li YM and Du WP: MicroRNA-495 inhibits the progression of non-small-cell lung cancer by targeting TCF4 and inactivating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 22:7750–7759. 2018.PubMed/NCBI | |
Tang H, Cai L, He X, Niu Z and Huang H, Hu W, Bian H and Huang H: Radiation-induced bystander effect and its clinical implications. Front Oncol. 13:11244122023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhan Y, Jin J, Zhang C and Li W: MicroRNA-15b promotes proliferation and invasion of non-small cell lung carcinoma cells by directly targeting TIMP2. Oncol Rep. 37:3305–3312. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rahman M, Lovat F, Romano G, Calore F, Acunzo M, Bell EH and Nana-Sinkam P: miR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung. J Biol Chem. 289:26406–26416. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Pais G, Becker V, Körbel C, Ampofo E, Ebert E, Hohneck J, Ludwig N, Meese E, Bohle RM, et al: Suppression of endothelial miR-22 mediates non-small cell lung cancer cell-induced angiogenesis. Mol Ther Nucleic Acids. 26:849–864. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Han X, Wang J, Wang L, Xu Z, Wei Q, Zhang W and Wang H: miR-22 enhances the radiosensitivity of small-cell lung cancer by targeting the WRNIP1. J Cell Biochem. 120:17650–17661. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sagar SK: miR-106b as an emerging therapeutic target in cancer. Genes Dis. 9:889–899. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yin W, Chen J, Wang G and Zhang D: MicroRNA-106b functions as an oncogene and regulates tumor viability and metastasis by targeting LARP4B in prostate cancer. Mol Med Rep. 20:951–958. 2019.PubMed/NCBI | |
Baumgartner U, Berger F, Hashemi Gheinani A, Burgener SS, Monastyrskaya K and Vassella E: miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Mol Cancer. 17:442018. View Article : Google Scholar : PubMed/NCBI | |
Zaporozhchenko IA, Morozkin ES, Skvortsova TE, Ponomaryova AA, Rykova EY, Cherdyntseva NV, Polovnikov ES, Pashkovskaya OA, Pokushalov EA, Vlassov VV and Laktionov PP: Plasma miR-19b and miR-183 as potential biomarkers of lung cancer. PLoS One. 11:e01652612016. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Xia H, Liu Y and Li M: Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. Biomed Res Int. 2014:6178682014. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li X, Liu C, Zhang X, Wu Y, Diao M, Tan S, Huang S, Cheng Y and You T: MicroRNA-21 as a diagnostic and prognostic biomarker of lung cancer: A systematic review and meta-analysis. Biosci Rep. 42:BSR202116532022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liang M, Zhang Y, Yuan B, Gao W, Shi Z and Bai J: miR-93, miR-373, and miR-17-5p negatively regulate the expression of TBP2 in lung cancer. Front Oncol. 10:5262020. View Article : Google Scholar : PubMed/NCBI | |
Lv J, An J, Zhang YD, Li ZX, Zhao GL, Gao J, Hu WW, Chen HM, Li AM and Jiang QS: A three serum miRNA panel as diagnostic biomarkers of radiotherapy-related metastasis in non-small cell lung cancer. Oncol Lett. 20:2362020. View Article : Google Scholar : PubMed/NCBI | |
Wei MC, Wang YM and Wang DW: miR-130a-mediated KLF3 can inhibit the growth of lung cancer cells. Cancer Manag Res. 13:2995–3004. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Liao H, Pu Q, Ke X, Hu X, Ma Y, Luo X, Jiang Q, Gong Y, Wu M, et al: miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct Target Ther. 5:852020. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Tang L, Yi P, Pan Q, Han Y, Shi Y, Rao S, Tan S, Xia L, Lin J, et al: MiRNAs in radiotherapy resistance of nasopharyngeal carcinoma. J Cancer. 11:3976–3985. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qu JQ, Yi HM, Ye X, Zhu JF, Yi H, Li LN, Xiao T, Yuan L, Li JY, Wang YY, et al: MiRNA-203 reduces nasopharyngeal carcinoma radioresistance by targeting IL8/AKT signaling. Mol Cancer Ther. 14:2653–2664. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Chen X, Yu S, Wang R, Zhao R and Du C: microRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN. Mol Med Rep. 17:1305–1310. 2018.PubMed/NCBI | |
Zheng CP, Han L, Hou WJ, Tang J, Wen YH, Fu R, Wang YJ and Wen WP: MicroRNA-9 suppresses the sensitivity of CNE2 cells to ultraviolet radiation. Mol Med Rep. 12:2367–2373. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zheng L, Lin S, Liu Y, Wang Y and Gao F: MiR-124 enhances cell radiosensitivity by targeting PDCD6 in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 10:11461–11470. 2017.PubMed/NCBI | |
Angelicone I, de Giacomo F, Priore A, Rotondi M, Facondo G and Osti MF: Radiotherapy in gastric cancer: Does it still play a significant role? Dig Med Res. 6:252023. View Article : Google Scholar | |
Manoel-Caetano FS, Rossi AFT, Calvet de Morais G, Severino FE and Silva AE: Upregulation of the APE1 and H2AX genes and miRNAs involved in DNA damage response and repair in gastric cancer. Genes Dis. 6:176–184. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Zhang X, Qin Y, Chen W, Fan H, Feng X, Wang J, Yan R, Zhao Y, Cheng Y, et al: miRNA-192 and −215 activate Wnt/β-catenin signaling pathway in gastric cancer via APC. J Cell Physiol. 235:6218–6229. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Wang B, Xiao J, Wu H and Shao Q: NUSAP1 promotes gastric cancer radioresistance by inhibiting ubiquitination of ANXA2 and is suppressed by miR-129-5p. J Cancer Res Clin Oncol. 150:4062024. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yan S, Hu J, Ding D and Liu Y, Li X, Pan HS, Liu G, Wu B and Liu Y: MiRNA-4537 functions as a tumor suppressor in gastric cancer and increases the radiosensitivity of gastric cancer cells. Bioengineered. 12:8457–8467. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Wang Y, Zang A, Wang Z, Fang G and Hong D: MiR-4766-5p inhibits the development and progression of gastric cancer by targeting NKAP. Onco Targets Ther. 12:8525–8536. 2019. View Article : Google Scholar : PubMed/NCBI | |
He J, Hua J, Ding N, Xu S, Sun R, Zhou G, Xie X and Wang J: Modulation of microRNAs by ionizing radiation in human gastric cancer. Oncol Rep. 32:787–793. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yang H, Ye L, Quan R and Chen M: Role of exosomal miRNAs in brain metastasis affected by radiotherapy. Transl Neurosci. 12:127–137. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Yu D, Liu X, Changyong E and Yu S: LINC00641/miR-4262/NRGN axis confines cell proliferation in glioma. Cancer Biol Ther. 21:758–766. 2020. View Article : Google Scholar : PubMed/NCBI | |
Devara D, Choudhary Y and Kumar S: Role of MicroRNA-502-3p in human diseases. Pharmaceuticals (Basel). 16:5322023. View Article : Google Scholar : PubMed/NCBI | |
Pedroza-Torres A, López-Urrutia E, García-Castillo V, Jacobo-Herrera N, Herrera LA, Peralta-Zaragoza O, López-Camarillo C, De Leon DC, Fernández-Retana J, Cerna-Cortés JF and Pérez-Plasencia C: MicroRNAs in cervical cancer: Evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules. 19:6263–6281. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei YQ, Jiao XL, Zhang SY, Xu Y and Kong BH: MiR-9-5p could promote angiogenesis and radiosensitivity in cervical cancer by targeting SOCS5. Eur Rev Med Pharmacol Sci. 23:7314–7326. 2019.PubMed/NCBI | |
Aguilar-Martinez SY, Campos-Viguri GE, Medina-Garcia SE, García-Flores RJ, Deas J, Gómez-Cerón C, Pedroza-Torres A, Bautista-Rodríguez E, Fernández-Tilapa G, Rodríguez-Dorantes M, et al: MiR-21 regulates growth and migration of cervical cancer cells by RECK signaling pathway. Int J Mol Sci. 25:40862024. View Article : Google Scholar : PubMed/NCBI | |
Masadah R, Rauf S, Pratama MY, Tiribelli C and Pascut D: The role of microRNAs in the cisplatin- and radio-resistance of cervical cancer. Cancers (Basel). 13:11682021. View Article : Google Scholar : PubMed/NCBI | |
Nilsen A, Hillestad T, Skingen VE, Aarnes EK, Fjeldbo CS, Hompland T, Evensen TS, Stokke T, Kristensen GB, Grallert B and Lyng H: miR-200a/b/-429 downregulation is a candidate biomarker of tumor radioresistance and independent of hypoxia in locally advanced cervical cancer. Mol Oncol. 16:1402–1419. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan W, Xiaoyun H, Haifeng Q, Jing L, Weixu H, Ruofan D, Jinjin Y and Zongji S: MicroRNA-218 enhances the radiosensitivity of human cervical cancer via promoting radiation induced apoptosis. Int J Med Sci. 11:691–696. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Zhai G and Bai Y: Values of miR-34a and miR-218 expression in the diagnosis of cervical cancer and the prediction of prognosis. Oncol Lett. 15:3580–3585. 2018.PubMed/NCBI | |
Wang W, Li Y, Liu N, Gao Y and Li L: MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer. 17:2922017. View Article : Google Scholar : PubMed/NCBI | |
Li YM, Li XJ, Yang HL, Zhang YB and Li JC: MicroRNA-23b suppresses cervical cancer biological progression by directly targeting six1 and affecting epithelial-to-mesenchymal transition and AKT/mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 23:4688–4697. 2019.PubMed/NCBI | |
Zhao S, Yan L, Zhao Z and Rong F: Up-regulation of miR-203 inhibits the growth of cervical cancer cells by inducing cell cycle arrest and apoptosis. Eur J Gynaecol Oncol. 40:791–795. 2019. | |
Mansour WY, Bogdanova NV, Kasten-Pisula U, Rieckmann T, Köcher S, Borgmann K, Baumann M, Krause M, Petersen C, Hu H, et al: Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma. Radiother Oncol. 106:147–154. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Ren Z, Jiao S, Guo J, Miao X, Wang J and Liu J: HIF-3α-induced miR-630 expression promotes cancer hallmarks in cervical cancer cells by forming a positive feedback loop. J Immunol Res. 2022:52629632022. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M and Samadian M: A review on the role of miR-1246 in the pathoetiology of different cancers. Front Mol Biosci. 8:7718352021. View Article : Google Scholar : PubMed/NCBI | |
Guz M, Jeleniewicz W and Cybulski M: An insight into miR-1290: An oncogenic miRNA with diagnostic potential. Int J Mol Sci. 23:12342022. View Article : Google Scholar : PubMed/NCBI | |
Hanna J, Hossain GS and Kocerha J: The potential for microRNA therapeutics and clinical research. Front Genet. 10:4782019. View Article : Google Scholar : PubMed/NCBI | |
Dasgupta I and Chatterjee A: recent advances in miRNA delivery systems. Methods Protoc. 4:102021. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O and Cherradi N: MicroRNA therapeutics in cancer: Current advances and challenges. Cancers (Basel). 13:26802021. View Article : Google Scholar : PubMed/NCBI | |
Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM and Slack FJ: Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther. 12:908–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Robertson ED, Wasylyk C, Ye T, Jung AC and Wasylyk B: The oncogenic MicroRNA Hsa-miR-155-5p targets the transcription factor ELK3 and links it to the hypoxia response. PLoS One. 9:e1130502014. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Yang Z and Li G: Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun. 386:549–553. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fasanaro P, Greco S, Lorenzi M, Pescatori M, Brioschi M, Kulshreshtha R, Banfi C, Stubbs A, Calin GA, Ivan M, et al: An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem. 284:35134–35143. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P and Griffioen AW: miRNAs: Micro-managers of anticancer combination therapies. Angiogenesis. 20:269–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Zhang Y, Jia T, Zhang K, Li J and Wang L: Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J. 279:1198–1208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Campani V, De Rosa G, Misso G, Zarone MR and Grimaldi A: Lipid nanoparticles to deliver miRNA in cancer. Curr Pharm Biotechnol. 17:741–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chapoy-Villanueva H, Martinez-Carlin I, Lopez-Berestein G and Chavez-Reyes A: Therapeutic silencing of HPV 16 E7 by systemic administration of siRNA-neutral DOPC nanoliposome in a murine cervical cancer model with obesity. J BUON. 20:1471–1479. 2015.PubMed/NCBI | |
Alanazi JS, Alqahtani FY, Aleanizy FS, Radwan AA, Bari A, Alqahtani QH, Abdelhady HG and Alsarra I: MicroRNA-539-5p-loaded PLGA nanoparticles grafted with iRGD as a targeting treatment for choroidal neovascularization. Pharmaceutics. 14:2432022. View Article : Google Scholar : PubMed/NCBI | |
Javanmardi S, Abolmaali SS, Mehrabanpour MJ, Aghamaali MR and Tamaddon AM: PEGylated nanohydrogels delivering anti-MicroRNA-21 suppress ovarian tumor-associated angiogenesis in matrigel and chicken chorioallantoic membrane models. Bioimpacts. 12:449–461. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Zhang B, Zhou L, Shi Y, Li Z, Xia Y and Tian J: Imaging dendrimer-grafted graphene oxide mediated anti-miR-21 delivery with an activatable luciferase reporter. ACS Appl Mater Interfaces. 8:9014–9021. 2016. View Article : Google Scholar : PubMed/NCBI | |
Genedy HH, Delair T and Montembault A: Chitosan based MicroRNA nanocarriers. Pharmaceuticals (Basel). 15:10362022. View Article : Google Scholar : PubMed/NCBI | |
Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, Boyer M and van Zandwijk N: Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 8:1079–1085. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moncal KK, Aydin RST, Abu-Laban M, Heo DN, Rizk E, Tucker SM, Lewis GS, Hayes D and Ozbolat IT: Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats. Mater Sci Eng C Mater Biol Appl. 105:1101282019. View Article : Google Scholar : PubMed/NCBI |