
Mechanisms and interventions in aneurysmal subarachnoid hemorrhage: Unraveling the role of inflammatory responses and cell death in early brain injury (Review)
- Authors:
- Rijin Lin
- Sheng Guan
- Jian Wang
- Mingyang Han
- Mengyan Fan
- Jiaxin Wan
- Xiaowen Zhang
- Nan Zhang
- Jing Li
-
Affiliations: Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, Henan 450003, P.R. China, Department of Human Anatomy, School of Basic Medical Sciences, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China, Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China - Published online on: July 14, 2025 https://doi.org/10.3892/mmr.2025.13621
- Article Number: 256
-
Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Feigin VL and Owolabi MO; World Stroke Organization-Lancet Neurology Commission Stroke Collaboration Group, : Pragmatic solutions to reduce the global burden of stroke: A world stroke organization-lancet neurology commission. Lancet Neurol. 22:1160–1206. 2023. View Article : Google Scholar : PubMed/NCBI | |
Claassen J and Park S: Spontaneous subarachnoid haemorrhage. Lancet. 400:846–862. 2022. View Article : Google Scholar : PubMed/NCBI | |
Etminan N, Chang HS, Hackenberg K, de Rooij NK, Vergouwen MDI, Rinkel GJE and Algra A: Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time period, blood pressure, and smoking prevalence in the population: A systematic review and meta-analysis. JAMA Neurol. 76:588–597. 2019. View Article : Google Scholar : PubMed/NCBI | |
Springer MV, Schmidt JM, Wartenberg KE, Frontera JA, Badjatia N and Mayer SA: Predictors of global cognitive impairment 1 year after subarachnoid hemorrhage. Neurosurgery. 65:1043–1051. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chai CZ, Ho UC and Kuo LT: Systemic inflammation after aneurysmal subarachnoid hemorrhage. Int J Mol Sci. 24:109432023. View Article : Google Scholar : PubMed/NCBI | |
Neifert SN, Chapman EK, Martini ML, Shuman WH, Schupper AJ, Oermann EK, Mocco J and Macdonald RL: Aneurysmal subarachnoid hemorrhage: The last decade. Transl Stroke Res. 12:428–446. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kuo LT and Huang AP: The pathogenesis of hydrocephalus following aneurysmal subarachnoid hemorrhage. Int J Mol Sci. 22:50502021. View Article : Google Scholar : PubMed/NCBI | |
Huang H and Lai LT: Incidence and case-fatality of aneurysmal subarachnoid hemorrhage in Australia, 2008–2018. World Neurosurg. 144:e438–e446. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fischer T, Johnsen SP, Pedersen L, Gaist D, Sørensen HT and Rothman KJ: Seasonal variation in hospitalization and case fatality of subarachnoid hemorrhage-a nationwide danish study on 9,367 patients. Neuroepidemiology. 24:32–37. 2005. View Article : Google Scholar : PubMed/NCBI | |
Biotti D, Jacquin A, Boutarbouch M, Bousquet O, Durier J, Ben Salem D, Ricolfi F, Beaurain J, Osseby GV, Moreau T, et al: Trends in case-fatality rates in hospitalized nontraumatic subarachnoid hemorrhage: Results of a population-based study in Dijon, France, From 1985 to 2006. Neurosurgery. 66:1039–1043. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vadikolias K, Tsivgoulis G, Heliopoulos I, Papaioakim M, Aggelopoulou C, Serdari A, Birbilis T and Piperidou C: Incidence and case fatality of subarachnoid haemorrhage in Northern Greece: The evros registry of subarachnoid haemorrhage. Int J Stroke. 4:322–327. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pan P, Xu L, Zhang H, Liu Y, Lu X, Chen G, Tang H and Wu J: A review of hematoma components clearance mechanism after subarachnoid hemorrhage. Front Neurosci. 14:6852020. View Article : Google Scholar : PubMed/NCBI | |
Bian LH, Liu YF, Nichols LT, Wang CX, Wang YL, Liu GF, Wang WJ and Zhao XQ: Epidemiology of subarachnoid hemorrhage, patterns of management, and outcomes in China: A hospital-based multicenter prospective study. CNS Neurosci Ther. 18:895–902. 2012. View Article : Google Scholar : PubMed/NCBI | |
Macdonald RL and Schweizer TA: Spontaneous subarachnoid haemorrhage. Lancet. 389:655–666. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T, Boogaarts HD, Steiger HJ, Petridis AK and Kamp MA: An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev. 41:917–930. 2018. View Article : Google Scholar : PubMed/NCBI | |
Foreman B: The pathophysiology of delayed cerebral ischemia. J Clin Neurophysiol. 33:174–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun JW, Chatterjee AR, Athiraman U, Dhar R and Zipfel GJ: Early brain injury after subarachnoid hemorrhage: Incidence and mechanisms. Stroke. 54:1426–1440. 2023. View Article : Google Scholar : PubMed/NCBI | |
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL and Lilla N: Neuroprotective strategies in aneurysmal subarachnoid hemorrhage (aSAH). Int J Mol Sci. 22:54422021. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Liu X, Liu D, Li K, Wang C, Liu Y, He B and Shi P: Inhibition of BECN1 suppresses lipid peroxidation by increasing system Xc− activity in early brain injury after subarachnoid hemorrhage. J Mol Neurosci. 67:622–631. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang S, Li X, Zheng Y, Shi H, Zhang D, Jing B, Chen Z, Qian G and Zhao G: Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytother Res. 36:1678–1691. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li Q, Tang J, Feng H and Zhang JH: The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Res. 1623:110–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shao AW, Wu HJ, Chen S, Ammar AB, Zhang JM and Hong Y: Resveratrol attenuates early brain injury after subarachnoid hemorrhage through inhibition of NF-κB-dependent inflammatory/MMP-9 pathway. CNS Neurosci Ther. 20:182–185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fang X and Xu RS: Protective effect of simvastatin on impaired intestine tight junction protein ZO-1 in a mouse model of Parkinson's disease. J Huazhong Univ Sci Technolog Med Sci. 35:880–884. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R, Zhang X, Shi X, Li R, Wu J, et al: TREM-1 exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl Stroke Res. 12:643–659. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S and Rubattu S: Role of DAMPs and of leukocytes infiltration in ischemic stroke: Insights from animal models and translation to the human disease. Cell Mol Neurobiol. 42:545–556. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pradilla G, Chaichana KL, Hoang S, Huang J and Tamargo RJ: Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am. 21:365–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kwon MS, Woo SK, Kurland DB, Yoon SH, Palmer AF, Banerjee U, Iqbal S, Ivanova S, Gerzanich V and Simard JM: Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci. 16:5028–5046. 2015. View Article : Google Scholar : PubMed/NCBI | |
Babadjouni RM, Radwanski RE, Walcott BP, Patel A, Durazo R, Hodis DM, Emanuel BA and Mack WJ: Neuroprotective strategies following intraparenchymal hemorrhage. J Neurointerv Surg. 9:1202–1207. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Zi L, Yang P, Wei Y, Zhong R, Wang Y, You C, Li Y, Tian M and Gu Z: Efficient iron and ROS nanoscavengers for brain protection after intracerebral hemorrhage. ACS Appl Mater Interfaces. 13:9729–9738. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yue T, Li X, Chen X, Zhu T, Li W, Wang B and Hang C: Hemoglobin derived from subarachnoid hemorrhage-induced pyroptosis of neural stem cells via ROS/NLRP3/GSDMD pathway. Oxid Med Cell Longev. 2023:43833322023. View Article : Google Scholar : PubMed/NCBI | |
Thilak S, Brown P, Whitehouse T, Gautam N, Lawrence E, Ahmed Z and Veenith T: Diagnosis and management of subarachnoid haemorrhage. Nat Commun. 15:18502024. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang J, Lu K, Zhang Y, Xu X, Deng J, Zhang X, Zhang H, Zhao Y and Wang X: ChemR23 signaling ameliorates brain injury via inhibiting NLRP3 inflammasome-mediated neuronal pyroptosis in ischemic stroke. J Transl Med. 22:232024. View Article : Google Scholar : PubMed/NCBI | |
Fumoto T, Naraoka M, Katagai T, Li Y, Shimamura N and Ohkuma H: The role of oxidative stress in microvascular disturbances after experimental subarachnoid hemorrhage. Transl Stroke Res. 10:684–694. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ghonim HT, Shah SS, Thompson JW, Ambekar S, Peterson EC and Elhammady MS: Stem cells as a potential adjunctive therapy in aneurysmal subarachnoid hemorrhage. J Vasc Interv Neurol. 8:30–37. 2016.PubMed/NCBI | |
Lee WD, Wang KC, Tsai YF, Chou PC, Tsai LK and Chien CL: Subarachnoid hemorrhage promotes proliferation, differentiation, and migration of neural stem cells via BDNF upregulation. PLoS One. 11:e01654602016. View Article : Google Scholar : PubMed/NCBI | |
Chang H, Lin C, Li Z, Shen Y, Zhang G, Mao L, Ma C, Liu N and Lu H: T3 alleviates neuroinflammation and reduces early brain injury after subarachnoid haemorrhage by promoting mitophagy via PINK 1-parkin pathway. Exp Neurol. 357:1141752022. View Article : Google Scholar : PubMed/NCBI | |
Xia DY, Yuan JL, Jiang XC, Qi M, Lai NS, Wu LY and Zhang XS: SIRT1 promotes M2 microglia polarization via reducing ROS-mediated NLRP3 inflammasome signaling after subarachnoid hemorrhage. Front Immunol. 12:7707442021. View Article : Google Scholar : PubMed/NCBI | |
Mitsui K, Ikedo T, Kamio Y, Furukawa H, Lawton MT and Hashimoto T: TLR4 (toll-like receptor 4) mediates the development of intracranial aneurysm rupture. Hypertension. 75:468–476. 2020. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Fujimoto M, Kawakita F, Liu L, Nakano F, Nishikawa H, Okada T, Imanaka-Yoshida K, Yoshida T and Shiba M: Toll-like receptor 4 and tenascin-C signaling in cerebral vasospasm and brain injuries after subarachnoid hemorrhage. Acta Neurochir Suppl. 127:91–96. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Zhou W, Yan Z, Qu M and Bu X: Toll-like receptor 4 (TLR4) is associated with cerebral vasospasm and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokyo). 55:878–884. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ and Lee S: Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy. 1:181–191. 2002. View Article : Google Scholar : PubMed/NCBI | |
Karimy JK, Reeves BC and Kahle KT: Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury. Expert Opin Ther Targets. 24:525–533. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Luo Q, Zhao YH and Chen X: Toll-like receptor-4 pathway as a possible molecular mechanism for brain injuries after subarachnoid hemorrhage. Int J Neurosci. 130:953–964. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto M, Okamoto T, Takeda K, Sato S, Sanjo H, Uematsu S, Saitoh T, Yamamoto N, Sakurai H, Ishii KJ, et al: Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol. 7:962–970. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, Chen J, Xiong XY, Lv FL, Liang QL and Yang QW: Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol. 75:876–889. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J and Jiang E: Progress in research on TLR4-mediated inflammatory response mechanisms in brain injury after subarachnoid hemorrhage. Cells. 11:37812022. View Article : Google Scholar : PubMed/NCBI | |
Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L and Suzuki H: Selective toll-like receptor 4 antagonists prevent acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Mol Neurobiol. 56:976–985. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S and Zhang JH: Immunological response in early brain injury after SAH. Acta Neurochir Suppl. 110:57–61. 2011.PubMed/NCBI | |
Khan D, Cornelius JF and Muhammad S: The role of NF-κB in intracranial aneurysm pathogenesis: A systematic review. Int J Mol Sci. 24:142182023. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Chen R, An J, Wang Y, Liang M and Huang K: Dauricine attenuates vascular endothelial inflammation through inhibiting NF-κB pathway. Front Pharmacol. 12:7589622021. View Article : Google Scholar : PubMed/NCBI | |
Tang P, Wang Y, Yang X, Wu Z, Chen W, Ye Y, Jiang Y, Lin L and Lin B and Lin B: Protective role of endothelial SIRT1 in deep vein thrombosis and hypoxia-induced endothelial dysfunction mediated by NF-κB deacetylation. Inflammation. 46:1887–1900. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kirsebom FCM, Kausar F, Nuriev R, Makris S and Johansson C: Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunol. 12:1244–1255. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahmed H, Khan MA, Kahlert UD, Niemelä M, Hänggi D, Chaudhry SR and Muhammad S: Role of adaptor protein myeloid differentiation 88 (MyD88) in post-subarachnoid hemorrhage inflammation: A systematic review. Int J Mol Sci. 22:41852021. View Article : Google Scholar : PubMed/NCBI | |
Klepinowski T, Skonieczna-Żydecka K, Pala B, Stachowska E and Sagan L: Gut microbiome in intracranial aneurysm growth, subarachnoid hemorrhage, and cerebral vasospasm: A systematic review with a narrative synthesis. Front Neurosci. 17:12471512023. View Article : Google Scholar : PubMed/NCBI | |
Liu GJ, Zhang QR, Gao X, Wang H, Tao T, Gao YY, Zhou Y, Chen XX, Li W and Hang CH: MiR-146a ameliorates hemoglobin-induced microglial inflammatory response via TLR4/IRAK1/TRAF6 associated pathways. Front Neurosci. 14:3112020. View Article : Google Scholar : PubMed/NCBI | |
Wang YH, Gao X, Tang YR, Yu Y, Sun MJ, Chen FQ and Li Y: The role of NF-κB/NLRP3 inflammasome signaling pathway in attenuating pyroptosis by melatonin upon spinal nerve ligation models. Neurochem Res. 47:335–346. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang Y, Li R, Zhu L, Fu B and Yan T: Salidroside ameliorates Parkinson's disease by inhibiting NLRP3-dependent pyroptosis. Aging (Albany NY). 12:9405–9426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shao BZ, Cao Q and Liu C: Targeting NLRP3 inflammasome in the treatment of CNS diseases. Front Mol Neurosci. 11:3202018. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Qin Z, Chen J, Guo G, Jiang X, Wang F, Zhuang J and Zhang Z: TRPV1 modulated NLRP3 inflammasome activation via calcium in experimental subarachnoid hemorrhage. Aging (Albany NY). 16:1096–1110. 2024. View Article : Google Scholar : PubMed/NCBI | |
Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R and Ojcius DM: The role of NOD-like receptors in innate immunity. Front Immunol. 14:11225862023. View Article : Google Scholar : PubMed/NCBI | |
Nagar A, Bharadwaj R, Shaikh MOF and Roy A: What are NLRP3-ASC specks? An experimental progress of 22 years of inflammasome research. Front Immunol. 14:11888642023. View Article : Google Scholar : PubMed/NCBI | |
Martín-Sánchez F, Compan V, Peñín-Franch A, Tapia-Abellán A, Gómez AI, Baños-Gregori MC, Schmidt FI and Pelegrin P: ASC oligomer favors caspase-1CARD domain recruitment after intracellular potassium efflux. J Cell Biol. 222:e2020030532023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhai H, Alemayehu H, Boulanger J, Hopkins LJ, Borgeaud AC, Heroven C, Howe JD, Leigh KE, Bryant CE and Modis Y: Cryo-electron tomography of NLRP3-activated ASC complexes reveals organelle co-localization. Nat Commun. 14:72462023. View Article : Google Scholar : PubMed/NCBI | |
Pétrilli V, Dostert C, Muruve DA and Tschopp J: The inflammasome: A danger sensing complex triggering innate immunity. Curr Opin Immunol. 19:615–622. 2007. View Article : Google Scholar : PubMed/NCBI | |
Devant P and Kagan JC: Molecular mechanisms of gasdermin D pore-forming activity. Nat Immunol. 24:1064–1075. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Chen S and Zhang JM: The updated role of oxidative stress in subarachnoid hemorrhage. Curr Drug Deliv. 14:832–842. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang C, Yan T, Yang L, Wang Y, Shi Z, Li M and Chen Q: Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of pyroptosis and neuroinflammation. J Cell Physiol. 236:6920–6931. 2021. View Article : Google Scholar : PubMed/NCBI | |
Akar A, Öztopuz RÖ, Büyük B, Ovali MA, Aykora D and Malçok ÜA: Neuroprotective effects of piceatannol on olfactory bulb injury after subarachnoid hemorrhage. Mol Neurobiol. 60:3695–3706. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Elliott EI and Sutterwala FS: Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 265:35–52. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng D, Liwinski T and Elinav E: Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 6:362020. View Article : Google Scholar : PubMed/NCBI | |
He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ and Han J: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25:1285–1298. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ji XY, Tan BK and Zhu YZ: Salvia miltiorrhiza and ischemic diseases. Acta Pharmacol Sin. 21:1089–1094. 2000.PubMed/NCBI | |
Zhang H and Chen X: Effects of salvianolic acid B on osteogenic differentiation and oxidative stress of periodontal ligament stem cells. Genomics Appl Biol. 39:3232–3240. 2020. | |
Guarente L: Sirtuins as potential targets for metabolic syndrome. Nature. 444:868–874. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X, Lv S, Chen X, Zhang X, Hang C and Wang J: Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med. 124:504–516. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Xie X, Tang M, Zhang J, Zhang B, Zhao Q, Han Y, Yan W, Peng C and You Z: Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun. 66:111–124. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shu T, Pang M, Rong L, Liu C, Wang J, Zhou W, Wang X and Liu B: Protective effects and mechanisms of salvianolic acid B against H2O2-induced injury in induced pluripotent stem cell-derived neural stem cells. Neurochem Res. 40:1133–1143. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhao L, Yue L, Wang B, Li X, Guo H, Ma Y, Yao C, Gao L, Deng J, et al: Pterostilbene attenuates early brain injury following subarachnoid hemorrhage via inhibition of the NLRP3 inflammasome and Nox2-related oxidative stress. Mol Neurobiol. 54:5928–5940. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xu P, Liu Y, Wang Z, Lenahan C, Fang Y, Lu J, Zheng J, Wang K, Wang W, et al: New insights of early brain injury after subarachnoid hemorrhage: A focus on the caspase family. Curr Neuropharmacol. 21:392–408. 2023. View Article : Google Scholar : PubMed/NCBI | |
Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM and Thompson CB: A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15:2685–2694. 1996. View Article : Google Scholar : PubMed/NCBI | |
Iseda K, Ono S, Onoda K, Satoh M, Manabe H, Nishiguchi M, Takahashi K, Tokunaga K, Sugiu K and Date I: Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg. 107:128–135. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Wang X, Lu J, Shi H, Huang L, Shao A, Zhang A, Liu Y, Ren R, Lenahan C, et al: Inhibition of caspase-1-mediated inflammasome activation reduced blood coagulation in cerebrospinal fluid after subarachnoid haemorrhage. EbioMedicine. 76:1038432022. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Liu Y, Zhou C, Wu Y, Sun J, Gao X and Huang Y: Biological effects and mechanisms of caspases in early brain injury after subarachnoid hemorrhage. Oxid Med Cell Longev. 2022:33456372022. View Article : Google Scholar : PubMed/NCBI | |
Delgado A, Cholevas C and Theoharides TC: Neuroinflammation in Alzheimer's disease and beneficial action of luteolin. Biofactors. 47:207–217. 2021. View Article : Google Scholar : PubMed/NCBI | |
Theoharides TC, Conti P and Economu M: Brain inflammation, neuropsychiatric disorders, and immunoendocrine effects of luteolin. J Clin Psychopharmacol. 34:187–189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZH, Liu JQ, Hu CD, Zhao XT, Qin FY, Zhuang Z and Zhang XS: Luteolin confers cerebroprotection after subarachnoid hemorrhage by suppression of NLPR3 inflammasome activation through Nrf2-dependent pathway. Oxid Med Cell Longev. 2021:58381012021. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Hu M, Hu J, Du Z, Su Q and Xiang Z: Luteolin suppresses microglia neuroinflammatory responses and relieves inflammation-induced cognitive impairments. Neurotox Res. 39:1800–1811. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu FY, Cai J, Wang C, Ruan W, Guan GP, Pan HZ, Li JR, Qian C, Chen JS, Wang L and Chen G: Fluoxetine attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage: A possible role for the regulation of TLR4/MyD88/NF-κB signaling pathway. J Neuroinflammation. 15:3472018. View Article : Google Scholar : PubMed/NCBI | |
Hu HM, Li B, Wang XD, Guo YS, Hui H, Zhang HP, Wang B, Huang DG and Hao DJ: Fluoxetine is neuroprotective in early brain injury via its anti-inflammatory and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model. Neurosci Bull. 34:951–962. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou K, Shi L, Wang Z, Zhou J, Manaenko A, Reis C, Chen S and Zhang J: RIP1-RIP3-DRP1 pathway regulates NLRP3 inflammasome activation following subarachnoid hemorrhage. Exp Neurol. 295:116–124. 2017. View Article : Google Scholar : PubMed/NCBI | |
Endo Y, Winarski KL, Sajib MS, Ju A and Wu WJ: Atezolizumab induces necroptosis and contributes to hepatotoxicity of human hepatocytes. Int J Mol Sci. 24:116942023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jin H, Xu H, Peng Y, Jie L, Xu D, Chen L, Li T, Fan L, He P, et al: The neuroprotective effects of necrostatin-1 on subarachnoid hemorrhage in rats are possibly mediated by preventing blood-brain barrier disruption and RIP3-mediated necroptosis. Cell Transplant. 28:1358–1372. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Liu J, Wang J, Yin A, Jiang Z, Ye S, Liu X, Zhang X, Wang F and Xiong L: Activation of astroglial CB1R mediates cerebral ischemic tolerance induced by electroacupuncture. J Cereb Blood Flow Metab. 41:2295–2310. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ulloa L: Electroacupuncture activates neurons to switch off inflammation. Nature. 598:573–574. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yang X, Cao Y, Li X, Xu R, Yan J, Guo Z, Sun S, Sun X and Wu Y: Electroacupuncture alleviates early brain injury via modulating microglia polarization and suppressing neuroinflammation in a rat model of subarachnoid hemorrhage. Heliyon. 9:e144752023. View Article : Google Scholar : PubMed/NCBI |