1
|
Ammirati E and Moslehi JJ: Diagnosis and
treatment of acute myocarditis: A review. JAMA. 329:1098–1113.
2023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Basso C and Longo DL: Myocarditis. N Engl
J Med. 387:1488–1500. 2022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Caforio ALP, Pankuweit S, Arbustini E,
Basso C, Gimeno-Blanes J, Felix SB, Fu M, Heliö T, Heymans S, Jahns
R, et al: Current state of knowledge on aetiology, diagnosis,
management, and therapy of myocarditis: A position statement of the
European society of cardiology working group on myocardial and
pericardial diseases. Eur Heart J. 34:2636–2648. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nagai T, Inomata T, Kohno T, Sato T, Tada
A, Kubo T, Nakamura K, Oyama-Manabe N, Ikeda Y, Fujino T, et al:
JCS 2023 guideline on the diagnosis and treatment of myocarditis.
Circ J. 87:674–754. 2023. View Article : Google Scholar : PubMed/NCBI
|
5
|
Friedrich MG, Sechtem U, Schulz-Menger J,
Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet
M, Prasad S, et al: Cardiovascular magnetic resonance in
myocarditis: A JACC white paper. J Am Coll Cardiol. 53:1475–1487.
2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ferreira VM, Schulz-Menger J, Holmvang G,
Kramer CM, Carbone I, Sechtem U, Kindermann I, Gutberlet M, Cooper
LT, Liu P and Friedrich MG: Cardiovascular magnetic resonance in
nonischemic myocardial inflammation: Expert recommendations. J Am
Coll Cardiol. 72:3158–3176. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Law YM, Lal AK, Chen S, Čiháková D, Cooper
LT Jr, Deshpande S, Godown J, Grosse-Wortmann L, Robinson JD and
Towbin JA; American Heart Association Pediatric Heart Failure,
Transplantation Committee of the Council on Lifelong Congenital
Heart Disease, Heart Health in the Young and Stroke Council, .
Diagnosis and management of myocarditis in children: A scientific
statement from the American heart association. Circulation.
144:e123–e135. 2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bernhard B, Marxer ME, Zurkirchen JC,
Schütze J, Wahl A, Elchinova E, Spano G, Boscolo Berto M, Wieser M,
Garefa C, et al: Prognostic implications of clinical and imaging
diagnostic criteria for myocarditis. J Am Coll Cardiol.
84:1373–1387. 2024. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kociol RD, Cooper LT, Fang JC, Moslehi JJ,
Pang PS, Sabe MA, Shah RV, Sims DB, Thiene G and Vardeny O;
American Heart Association Heart Failure, Transplantation Committee
of the Council on Clinical Cardiology, . Recognition and initial
management of fulminant myocarditis: A scientific statement from
the American heart association. Circulation. 141:e69–e92. 2020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Caforio ALP, Kaski JP, Gimeno JR, Elliott
PM, Laroche C, Tavazzi L, Tendera M, Fu M, Sala S, Seferovic PM, et
al: Endomyocardial biopsy: Safety and prognostic utility in
paediatric and adult myocarditis in the European Society of
cardiology EURObservational research programme cardiomyopathy and
myocarditis long-term registry. Eur Heart J. 45:2548–2569. 2024.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Lee YS, Shibata Y, Malhotra A and Dutta A:
A novel class of small RNAs: tRNA-derived RNA fragments (tRFs).
Genes Dev. 23:2639–2649. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Schimmel P: The emerging complexity of the
tRNA world: Mammalian tRNAs beyond protein synthesis. Nat Rev Mol
Cell Biol. 19:45–58. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Magee R and Rigoutsos I: On the expanding
roles of tRNA fragments in modulating cell behavior. Nucleic Acids
Res. 48:9433–9448. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ruggero K, Guffanti A, Corradin A, Sharma
VK, De Bellis G, Corti G, Grassi A, Zanovello P, Bronte V, Ciminale
V and D'Agostino DM: Small noncoding RNAs in cells transformed by
human T-cell leukemia virus type 1: A role for a tRNA fragment as a
primer for reverse transcriptase. J Virol. 88:3612–3622. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Geng G, Wang H, Xin W, Liu Z, Chen J,
Danting Z, Han F and Ye S: tRNA derived fragment (tRF)-3009
participates in modulation of IFN-α-induced CD4+ T cell
oxidative phosphorylation in lupus patients. J Transl Med.
19:3052021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Maute RL, Schneider C, Sumazin P, Holmes
A, Califano A, Basso K and Dalla-Favera R: tRNA-derived microRNA
modulates proliferation and the DNA damage response and is
down-regulated in B cell lymphoma. Proc Natl Acad Sci USA.
110:1404–1409. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ivanov P, O'Day E, Emara MM, Wagner G,
Lieberman J and Anderson P: G-quadruplex structures contribute to
the neuroprotective effects of angiogenin-induced tRNA fragments.
Proc Natl Acad Sci USA. 111:18201–18206. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi
J, Feng GH, Peng H, Zhang X, Zhang Y, et al: Sperm tsRNAs
contribute to intergenerational inheritance of an acquired
metabolic disorder. Science. 351:397–400. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hogg MC, Raoof R, El Naggar H, Monsefi N,
Delanty N, O'Brien DF, Bauer S, Rosenow F, Henshall DC and Prehn
JH: Elevation in plasma tRNA fragments precede seizures in human
epilepsy. J Clin Invest. 129:2946–2951. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang J, Han B, Yi Y, Wang Y, Zhang L, Jia
H, Lv J, Yang X, Jiang D and Zhang J: Expression profiles and
functional analysis of plasma tRNA-derived small RNAs in children
with fulminant myocarditis. Epigenomics. 13:1057–1075. 2021.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Suh KS and Yuspa SH: Intracellular
chloride channels: Critical mediators of cell viability and
potential targets for cancer therapy. Curr Pharm Des. 11:2753–2764.
2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fernández-Salas E, Suh KS, Speransky VV,
Bowers WL, Levy JM, Adams T, Pathak KR, Edwards LE, Hayes DD, Cheng
C, et al: mtCLIC/CLIC4, an organellular chloride channel protein,
is increased by DNA damage and participates in the apoptotic
response to p53. Mol Cell Biol. 22:3610–3620. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Suh KS, Mutoh M, Nagashima K,
Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG,
Dumont RA, Levy JM, et al: The organellular chloride channel
protein CLIC4/mtCLIC translocates to the nucleus in response to
cellular stress and accelerates apoptosis. J Biol Chem.
279:4632–4641. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Abdul-Salam VB, Russomanno G, Chien-Nien
C, Mahomed AS, Yates LA, Wilkins MR, Zhao L, Gierula M, Dubois O,
Schaeper U, et al: CLIC4/Arf6 pathway. Circ Res. 124:52–65. 2019.
View Article : Google Scholar : PubMed/NCBI
|
25
|
He G, Ma Y, Chou SY, Li H, Yang C, Chuang
JZ, Sung CH and Ding A: Role of CLIC4 in the host innate responses
to bacterial lipopolysaccharide. Eur J Immunol. 41:1221–1230. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kleinjan ML, Mao Y, Naiche LA, Joshi JC,
Gupta A, Jesse JJ, Shaye DD, Mehta D and Kitajewski J: CLIC4
regulates endothelial barrier control by mediating PAR1 signaling
via RhoA. Arterioscler Thromb Vasc Biol. 43:1441–1454. 2023.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
R Core Team: R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing;
Vienna, Austria: 2023, https://www.R-project.org/
|
29
|
Yeung ML, Bennasser Y, Watashi K, Le SY,
Houzet L and Jeang KT: Pyrosequencing of small non-coding RNAs in
HIV-1 infected cells: Evidence for the processing of a
viral-cellular double-stranded RNA hybrid. Nucleic Acids Res.
37:6575–6586. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Martinez G, Choudury SG and Slotkin RK:
tRNA-derived small RNAs target transposable element transcripts.
Nucleic Acids Res. 45:5142–5152. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Matsui M and Corey DR: Non-coding RNAs as
drug targets. Nat Rev Drug Discov. 16:167–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX
and Gao QY: A specific tRNA half, 5′tiRNA-His-GTG, responds to
hypoxia via the HIF1α/ANG axis and promotes colorectal cancer
progression by regulating LATS2. J Exp Clin Cancer Res. 40:672021.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zong T, Yang Y, Lin X, Jiang S, Zhao H,
Liu M, Meng Y, Li Y, Zhao L, Tang G, et al: 5′-tiRNA-Cys-GCA
regulates VSMC proliferation and phenotypic transition by targeting
STAT4 in aortic dissection. Mol Ther Nucleic Acids. 26:295–306.
2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jehn J, Treml J, Wulsch S, Ottum B, Erb V,
Hewel C, Kooijmans RN, Wester L, Fast I and Rosenkranz D: 5′ tRNA
halves are highly expressed in the primate hippocampus and might
sequence-specifically regulate gene expression. RNA. 26:694–707.
2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hang W, Chen C, Seubert JM and Wang DW:
Fulminant myocarditis: A comprehensive review from etiology to
treatments and outcomes. Signal Transduct Target Ther. 5:2872020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Tao EW, Cheng WY, Li WL, Yu J and Gao QY:
tiRNAs: A novel class of small noncoding RNAs that helps cells
respond to stressors and plays roles in cancer progression. J Cell
Physiol. 235:683–690. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Su Z, Kuscu C, Malik A, Shibata E and
Dutta A: Angiogenin generates specific stress-induced tRNA halves
and is not involved in tRF-3-mediated gene silencing. J Biol Chem.
294:16930–16941. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fricker R, Brogli R, Luidalepp H, Wyss L,
Fasnacht M, Joss O, Zywicki M, Helm M, Schneider A, Cristodero M
and Polacek N: A tRNA half modulates translation as stress response
in Trypanosoma brucei. Nat Commun. 10:1182019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Q, Hu B, Hu GW, Chen CY, Niu X, Liu J,
Zhou SM, Zhang CQ, Wang Y and Deng ZF: tRNA-derived small
non-coding RNAs in response to ischemia inhibit angiogenesis. Sci
Rep. 6:208502016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pawar K, Shigematsu M, Sharbati S and
Kirino Y: Infection-induced 5′-half molecules of tRNAHisGUG
activate Toll-like receptor 7. PLoS Biol. 18:e30009822020.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Pekarsky Y, Balatti V, Palamarchuk A,
Rizzotto L, Veneziano D, Nigita G, Rassenti LZ, Pass HI, Kipps TJ,
Liu CG and Croce CM: Dysregulation of a family of short noncoding
RNAs, tsRNAs, in human cancer. Proc Natl Acad Sci USA.
113:5071–5076. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Goodarzi H, Liu X, Nguyen HCB, Zhang S,
Fish L and Tavazoie SF: Endogenous tRNA-derived fragments suppress
breast cancer progression via YBX1 displacement. Cell. 161:790–802.
2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sharma U, Conine CC, Shea JM, Boskovic A,
Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, et
al: Biogenesis and function of tRNA fragments during sperm
maturation and fertilization in mammals. Science. 351:391–396.
2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Huang B, Yang H, Cheng X, Wang D, Fu S,
Shen W, Zhang Q, Zhang L, Xue Z, Li Y, et al: tRF/miR-1280
suppresses stem cell-like cells and metastasis in colorectal
cancer. Cancer Res. 77:3194–3206. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Boskovic A, Bing XY, Kaymak E and Rando
OJ: Control of noncoding RNA production and histone levels by a 5′
tRNA fragment. Genes Dev. 34:118–131. 2020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Malik M, Jividen K, Padmakumar VC,
Cataisson C, Li L, Lee J, Howard OM and Yuspa SH: Inducible
NOS-induced chloride intracellular channel 4 (CLIC4) nuclear
translocation regulates macrophage deactivation. Proc Natl Acad Sci
USA. 109:6130–6135. 2012. View Article : Google Scholar : PubMed/NCBI
|