1
|
Almeida FM, Battochio AS, Napoli JP, Alves
KA, Balbin GS, Oliveira-Junior M, Moriya HT, Pego-Fernandes PM,
Vieira RP and Pazetti R: Creatine supply attenuates
ischemia-reperfusion injury in lung transplantation in rats.
Nutrients. 12:27652020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hackman KL, Snell GI and Bach LA: An
unexpectedly high prevalence of undiagnosed diabetes in patients
awaiting lung transplantation. J Heart Lung Transplant. 32:86–91.
2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Christie JD, Edwards LB, Kucheryavaya AY,
Aurora P, Dobbels F, Kirk R, Rahmel AO, Stehlik J and Hertz MI: The
registry of the international society for heart and lung
transplantation: Twenty-seventh official adult lung and heart-lung
transplant report-2010. J Heart Lung Transplant. 29:1104–1118.
2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cloer CM, Givens CS, Buie LK, Rochelle LK,
Lin YT, Popa S, Shelton RVM, Zhan J, Zimmerman TR, Jones BG, et al:
Mitochondrial transplant after ischemia reperfusion promotes
cellular salvage and improves lung function during ex-vivo lung
perfusion. J Heart Lung Transplant. 42:575–584. 2023. View Article : Google Scholar : PubMed/NCBI
|
5
|
Van Huynh T, Rethi L, Rethi L, Chen CH,
Chen YJ and Kao YH: The complex interplay between imbalanced
mitochondrial dynamics and metabolic disorders in type 2 diabetes.
Cells. 12:12232023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jiang T, Liu Y, Meng Q, Lv X, Yue Z, Ding
W, Liu T and Cui X: Hydrogen sulfide attenuates lung
ischemia-reperfusion injury through SIRT3-dependent regulation of
mitochondrial function in type 2 diabetic rats. Surgery.
165:1014–1026. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu L, Li Y, Chen G and Chen Q: Crosstalk
between mitochondrial biogenesis and mitophagy to maintain
mitochondrial homeostasis. J Biomed Sci. 30:862023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jiang T, Liu T, Deng X, Ding W, Yue Z,
Yang W, Lv X and Li W: Adiponectin ameliorates lung
ischemia-reperfusion injury through SIRT1-PINK1 signaling-mediated
mitophagy in type 2 diabetic rats. Respir Res. 22:2582021.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu L, Gong B, Duan W, Fan C, Zhang J, Li
Z, Xue X, Xu Y, Meng D, Li B, et al: Melatonin ameliorates
myocardial ischemia/reperfusion injury in type 1 diabetic rats by
preserving mitochondrial function: Role of AMPK-PGC-1α-SIRT3
signaling. Sci Rep. 7:413372017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong
Y, Qu K, Liu C and Zhang J: Metformin protects against intestinal
ischemia-reperfusion injury and cell pyroptosis via
TXNIP-NLRP3-GSDMD pathway. Redox Biol. 32:1015342020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Demir M, Yilmaz B, Kalyoncu S, Tuncer M,
Bozdag Z, Ince O, Bozdayi MA, Ulusal H and Taysi S: Metformin
reduces ovarian ischemia reperfusion injury in rats by improving
oxidative/nitrosative stress. Taiwan J Obstet Gynecol. 60:45–50.
2021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tian J, Zheng Y, Mou T, Yun M, Tian Y, Lu
Y, Bai Y, Zhou Y, Hacker M, Zhang X and Li X: Metformin confers
longitudinal cardiac protection by preserving mitochondrial
homeostasis following myocardial ischemia/reperfusion injury. Eur J
Nucl Med Mol Imaging. 50:825–838. 2023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang K, Wang T, Sun GF, Xiao JX, Jiang
LP, Tou FF, Qu XH and Han XJ: Metformin protects against retinal
ischemia/reperfusion injury through AMPK-mediated mitochondrial
fusion. Free Radic Biol Med. 205:47–61. 2023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guo Y, Jiang H, Wang M, Ma Y, Zhang J and
Jing L: Metformin alleviates cerebral ischemia/reperfusion injury
aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin
pathway-mediated mitophagy and apoptosis. Chem Biol Interact.
384:1107232023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu XD, Li YG, Wang GY, Bi YG, Zhao Y, Yan
ML, Liu X, Wei M, Wan LL and Zhang QY: Metformin protects high
glucose-cultured cardiomyocytes from oxidative stress by promoting
NDUFA13 expression and mitochondrial biogenesis via the AMPK
signaling pathway. Mol Med Rep. 22:5262–5270. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Docrat TF, Nagiah S, Naicker N, Baijnath
S, Singh S and Chuturgoon AA: The protective effect of metformin on
mitochondrial dysfunction and endoplasmic reticulum stress in
diabetic mice brain. Eur J Pharmacol. 875:1730592020. View Article : Google Scholar : PubMed/NCBI
|
17
|
de Marañón AM, Diaz-Pozo P, Canet F,
Díaz-Morales N, Abad-Jiménez Z, López-Domènech S, Vezza T,
Apostolova N, Morillas C, Rocha M and Víctor VM: Metformin
modulates mitochondrial function and mitophagy in peripheral blood
mononuclear cells from type 2 diabetic patients. Redox Biol.
53:1023422022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jiang S, Teague AM, Tryggestad JB, Jensen
ME and Chernausek SD: Role of metformin in epigenetic regulation of
placental mitochondrial biogenesis in maternal diabetes. Sci Rep.
10:83142020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang T, Yang W, Zhang H, Song Z, Liu T
and Lv X: Hydrogen sulfide ameliorates lung ischemia-reperfusion
injury through SIRT1 signaling pathway in type 2 diabetic rats.
Front Physiol. 11:5962020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu T, Wei H, Zhang L, Ma C, Wei Y, Jiang
T and Li W: Metformin attenuates lung ischemia-reperfusion injury
and necroptosis through AMPK pathway in type 2 diabetic recipient
rats. BMC Pulm Med. 24:2372024. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li D, Song LL, Wang J, Meng C and Cui XG:
Adiponectin protects against lung ischemia-reperfusion injury in
rats with type 2 diabetes mellitus. Mol Med Rep. 17:7191–7201.
2018.PubMed/NCBI
|
22
|
Reichard A and Asosingh K: Best practices
for preparing a single cell suspension from solid tissues for flow
cytometry. Cytometry A. 95:219–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hackman KL, Bailey MJ, Snell GI and Bach
LA: Diabetes is a major risk factor for mortality after lung
transplantation. Am J Transplant. 14:438–445. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stehlik J, Edwards LB, Kucheryavaya AY,
Aurora P, Christie JD, Kirk R, Dobbels F, Rahmel AO and Hertz MI:
The registry of the international society for heart and lung
transplantation: Twenty-seventh official adult heart transplant
report-2010. J Heart Lung Transplant. 29:1089–1103. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bradbury RA, Shirkhedkar D, Glanville AR
and Campbell LV: Prior diabetes mellitus is associated with
increased morbidity in cystic fibrosis patients undergoing
bilateral lung transplantation: An ‘orphan’ area? A retrospective
case-control study. Intern Med J. 39:384–388. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rovira-Llopis S, Bañuls C, Diaz-Morales N,
Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics
in type 2 diabetes: Pathophysiological implications. Redox Biol.
11:637–645. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Donath MY and Shoelson SE: Type 2 diabetes
as an inflammatory disease. Nat Rev Immunol. 11:98–107. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang X, Zhang B, Li G, Zhao H, Tian X, Yu
J, Yin Y and Meng C: Dexmedetomidine alleviates lung oxidative
stress injury induced by ischemia-reperfusion in diabetic rats via
the Nrf2-Sulfiredoxin1 pathway. Biomed Res Int. 2022:55847332022.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hansen LW, Khader A, Yang WL, Prince JM,
Nicastro JM, Coppa GF and Wang P: Sirtuin 1 activator Srt1720
protects against organ injury induced by intestinal
ischemia-reperfusion. Shock. 45:359–366. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan
J, Wang N, Deng C, Zhang S, Li Y, et al: SIRT1 activation by
curcumin pretreatment attenuates mitochondrial oxidative damage
induced by myocardial ischemia reperfusion injury. Free Radic Biol
Med. 65:667–679. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang Y, Jiang S, Dong Y, Fan C, Zhao L,
Yang X, Li J, Di S, Yue L, Liang G, et al: Melatonin prevents cell
death and mitochondrial dysfunction via a SIRT1-dependent mechanism
during ischemic-stroke in mice. J Pineal Res. 58:61–70. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang K, Velagapudi S, Akhmedov A, Kraler
S, Lapikova-Bryhinska T, Schmiady MO, Wu X, Geng L, Camici GG, Xu A
and Lüscher TF: Chronic SIRT1 supplementation in diabetic mice
improves endothelial function by suppressing oxidative stress.
Cardiovasc Res. 119:2190–2201. 2023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tao A, Xu X, Kvietys P, Kao R, Martin C
and Rui T: Experimental diabetes mellitus exacerbates
ischemia/reperfusion-induced myocardial injury by promoting
mitochondrial fission: Role of down-regulation of myocardial Sirt1
and subsequent Akt/Drp1 interaction. Int J Biochem Cell Biol.
105:94–103. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma S, Feng J, Zhang R, Chen J, Han D, Li
X, Yang B, Li X, Fan M, Li C, et al: SIRT1 activation by
resveratrol alleviates cardiac dysfunction via mitochondrial
regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev.
2017:46027152017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rutledge CA, Kaufman BA, Dezfulian C and
Elmer J: Metformin protects against cardiac and renal damage in
diabetic cardiac arrest patients. Resuscitation. 174:42–46. 2022.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang X, Yang L, Kang L, Li J, Yang L,
Zhang J, Liu J, Zhu M, Zhang Q, Shen Y and Qi Z: Metformin
attenuates myocardial ischemia-reperfusion injury via up-regulation
of antioxidant enzymes. PLoS One. 12:e01827772017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu Z, Bai Y, Qi Y, Chang C, Jiao Y, Bai Y
and Guo Z: Metformin ameliorates ferroptosis in cardiac ischemia
and reperfusion by reducing NOX4 expression via promoting AMPKα.
Pharm Biol. 61:886–896. 2023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cuyàs E, Verdura S, Llorach-Parés L,
Fernández-Arroyo S, Joven J, Martin-Castillo B, Bosch-Barrera J,
Brunet J, Nonell-Canals A, Sanchez-Martinez M and Menendez JA:
Metformin is a direct SIRT1-activating compound: Computational
modeling and experimental validation. Front Endocrinol (Lausanne).
9:6572018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Zhang H, Li S, Huang K, Jiang L
and Wang Y: Metformin alleviates LPS-induced acute lung injury by
regulating the SIRT1/NF-κB/NLRP3 pathway and inhibiting endothelial
cell pyroptosis. Front Pharmacol. 13:8013372022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ren H, Shao Y, Wu C, Ma X, Lv C and Wang
Q: Metformin alleviates oxidative stress and enhances autophagy in
diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell
Endocrinol. 500:1106282020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li W, Jin S, Hao J, Shi Y, Li W and Jiang
L: Metformin attenuates ischemia/reperfusion-induced apoptosis of
cardiac cells by downregulation of p53/microRNA-34a via activation
of SIRT1. Can J Physiol Pharmacol. 99:875–884. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Qi X and Wang J: Melatonin improves
mitochondrial biogenesis through the AMPK/PGC1α pathway to
attenuate ischemia/reperfusion-induced myocardial damage. Aging
(Albany NY). 12:7299–7312. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jornayvaz FR and Shulman GI: Regulation of
mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Shi X, Li Y, Wang Y, Ding T, Zhang X and
Wu N: Pharmacological postconditioning with sappanone A ameliorates
myocardial ischemia reperfusion injury and mitochondrial
dysfunction via AMPK-mediated mitochondrial quality control.
Toxicol Appl Pharmacol. 427:1156682021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Huang Q, Su H, Qi B, Wang Y, Yan K, Wang
X, Li X and Zhao D: A SIRT1 activator, ginsenoside Rc, promotes
energy metabolism in cardiomyocytes and neurons. J Am Chem Soc.
143:1416–1427. 2021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Valerio A, Bertolotti P, Delbarba A,
Perego C, Dossena M, Ragni M, Spano P, Carruba MO, De Simoni MG and
Nisoli E: Glycogen synthase kinase-3 inhibition reduces ischemic
cerebral damage, restores impaired mitochondrial biogenesis and
prevents ROS production. J Neurochem. 116:1148–1159. 2011.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Yuan Y, Tian Y, Jiang H, Cai LY, Song J,
Peng R and Zhang XM: Mechanism of PGC-1α-mediated mitochondrial
biogenesis in cerebral ischemia-reperfusion injury. Front Mol
Neurosci. 16:12249642023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lagouge M, Argmann C, Gerhart-Hines Z,
Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P,
Elliott P, et al: Resveratrol improves mitochondrial function and
protects against metabolic disease by activating SIRT1 and
PGC-1alpha. Cell. 127:1109–1122. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Khader A, Yang WL, Kuncewitch M, Jacob A,
Prince JM, Asirvatham JR, Nicastro J, Coppa GF and Wang P: Sirtuin
1 activation stimulates mitochondrial biogenesis and attenuates
renal injury after ischemia-reperfusion. Transplantation.
98:148–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cantó C and Auwerx J: PGC-1alpha, SIRT1
and AMPK, an energy sensing network that controls energy
expenditure. Curr Opin Lipidol. 20:98–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li HR, Liu Q, Zhu CL, Sun XY, Sun CY, Yu
CM, Li P, Deng XM and Wang JF: β-Nicotinamide mononucleotide
activates NAD+/SIRT1 pathway and attenuates inflammatory and
oxidative responses in the hippocampus regions of septic mice.
Redox Biol. 63:1027452023. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ou Z, Zhao M, Xu Y, Wu Y, Qin L, Fang L,
Xu H and Chen J: Huangqi Guizhi Wuwu decoction promotes M2
microglia polarization and synaptic plasticity via
Sirt1/NF-κB/NLRP3 pathway in MCAO rats. Aging (Albany NY).
15:10031–10056. 2023. View Article : Google Scholar : PubMed/NCBI
|