
Role of the NLRP3 inflammasome in diabetes and its complications (Review)
- Authors:
- Xinyi Jiao
- Guoqing Tian
-
Affiliations: Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China - Published online on: August 19, 2025 https://doi.org/10.3892/mmr.2025.13657
- Article Number: 292
-
Copyright: © Jiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
DiMeglio LA, Evans-Molina C and Oram RA: Type 1 diabetes. Lancet. 391:2449–2462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al: IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183:1091192022. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L and Liu Y: Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 8:1522023. View Article : Google Scholar : PubMed/NCBI | |
Green EA, Eynon EE and Flavell RA: Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity. 9:733–743. 1998. View Article : Google Scholar : PubMed/NCBI | |
Navarro JF and Mora-Fernández C: The role of TNF-alpha in diabetic nephropathy: Pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 17:441–450. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fenercioglu AK, Gonen MS, Uzun H, Sipahioglu NT, Can G, Tas E, Kara Z, Ozkaya HM and Atukeren P: The association between serum 25-hydroxyvitamin D3 levels and pro-inflammatory markers in new-onset type 2 diabetes mellitus and prediabetes. Biomolecules. 13:17782023. View Article : Google Scholar : PubMed/NCBI | |
Donath MY and Shoelson SE: Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 11:98–107. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, Hersberger M, Eriksson U, Eberli FR, Becher B, et al: Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science. 306:1558–1561. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, Kajimoto Y, Ichijo H, Yamasaki Y and Hori M: Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med. 10:1128–1132. 2004. View Article : Google Scholar : PubMed/NCBI | |
Martinon F, Burns K and Tschopp J: The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI | |
Salman M, Shahzad H, Gangaraju R and Ishrat T: Fasudil mitigates diabetes-associated cognitive decline and enhances neuroprotection by suppressing NLRP3/Caspase-1/GSDMD signaling in a stroke mouse model. Exp Neurol. 389:1152682025. View Article : Google Scholar : PubMed/NCBI | |
Meier DT, de Paula Souza J and Donath MY: Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia. 68:3–16. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Zhang H, Niu T, Liu K, Fareeduddin Mohammed Farooqui H, Sun R, Chen X, Yuan Y and Wang S: Microglial SCAP deficiency protects against diabetes-associated cognitive impairment through inhibiting NLRP3 inflammasome-mediated neuroinflammation. Brain Behav Immun. 119:154–170. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X and Yu L: Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol. 14:10527562023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang Y, Antony V, Sun H and Liang G: Metabolism-associated molecular patterns (MAMPs). Trends Endocrinol Metab. 31:712–724. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Ouyang M, Qu Y, Wang M, Huang X, Lan J, Lai W and Xu Q: Advanced glycation end products promote melanogenesis by activating NLRP3 inflammasome in human dermal fibroblasts. J Invest Dermatol. 142:2591–2602.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li C, Yin H, Zhang X and Li Y: NLRP3 inflammasome: A potential alternative therapy target for atherosclerosis. Evid Based Complement Alternat Med. 2020:15613422020. View Article : Google Scholar : PubMed/NCBI | |
Swanson KV, Deng M and Ting JP: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fu J and Wu H: Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Magupalli VG and Wu H: Cryo-EM structures of the active NLRP3 inflammasome disc. Nature. 613:595–600. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q and Zhang Z: NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology. 453:1527202021. View Article : Google Scholar : PubMed/NCBI | |
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, et al: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 183:787–791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V and Angelin M: Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: Mechanistic insights and therapeutic implications. Inflammopharmacology. 32:2753–2779. 2024. View Article : Google Scholar : PubMed/NCBI | |
Franchi L, Eigenbrod T, Muñoz-Planillo R, Ozkurede U, Kim YG, Arindam C, Gale M Jr, Silverman RH, Colonna M, Akira S and Núñez G: Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J Immunol. 193:4214–4222. 2014. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM and Núñez G: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38:1142–1153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Subramanian N, Natarajan K, Clatworthy MR, Wang Z and Germain RN: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 153:348–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, et al: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 11:897–904. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, et al: Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87:74–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ and Jo EK: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 62:194–204. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giardino I, Edelstein D and Brownlee M: Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 94:110–117. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ahmed N: Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract. 67:3–21. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D and Stern D: Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 269:9889–9897. 1994. View Article : Google Scholar : PubMed/NCBI | |
Li J and Schmidt AM: Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem. 272:16498–16506. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, Xue J, Wei C and Xie L: The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci. 18:809–825. 2022. View Article : Google Scholar : PubMed/NCBI | |
Giugliano D, Ceriello A and Paolisso G: Oxidative stress and diabetic vascular complications. Diabetes Care. 19:257–267. 1996. View Article : Google Scholar : PubMed/NCBI | |
Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, et al: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 404:787–790. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yosri H, El-Kashef DH, El-Sherbiny M, Said E and Salem HA: Calycosin modulates NLRP3 and TXNIP-mediated pyroptotic signaling and attenuates diabetic nephropathy progression in diabetic rats; An insight. Biomed Pharmacother. 155:1137582022. View Article : Google Scholar : PubMed/NCBI | |
Horng T: Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 35:253–261. 2014. View Article : Google Scholar : PubMed/NCBI | |
D'Espessailles A, Mora YA, Fuentes C and Cifuentes M: Calcium-sensing receptor activates the NLRP3 inflammasome in LS14 preadipocytes mediated by ERK1/2 signaling. J Cell Physiol. 233:6232–6240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Biasizzo M and Kopitar-Jerala N: Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 11:5918032020. View Article : Google Scholar : PubMed/NCBI | |
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 11:637–645. 2017. View Article : Google Scholar : PubMed/NCBI | |
Spiller S, Blüher M and Hoffmann R: Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes Obes Metab. 20:2661–2669. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tall AR and Yvan-Charvet L: Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 15:104–116. 2015. View Article : Google Scholar : PubMed/NCBI | |
Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, Shirasuna K, Koyama Y, Sato-Tomita A, Matsuzaka T, et al: Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol. 38:744–756. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gasse P, Riteau N, Charron S, Girre S, Fick L, Pétrilli V, Tschopp J, Lagente V, Quesniaux VF, Ryffel B and Couillin I: Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 179:903–913. 2009. View Article : Google Scholar : PubMed/NCBI | |
Menu P and Vince JE: The NLRP3 inflammasome in health and disease: The good, the bad and the ugly. Clin Exp Immunol. 166:1–15. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song N and Li T: Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol. 9:23052018. View Article : Google Scholar : PubMed/NCBI | |
Yang XD, Li W, Zhang S, Wu D, Jiang X, Tan R, Niu X, Wang Q, Wu X, Liu Z, et al: PLK4 deubiquitination by Spata2-CYLD suppresses NEK7-mediated NLRP3 inflammasome activation at the centrosome. EMBO J. 39:e1022012020. View Article : Google Scholar : PubMed/NCBI | |
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lamkanfi M and Dixit VM: Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 28:137–161. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liu D, Zheng B, Yang Y, Qiao Y, Li S, Pan S, Liu Y, Feng Q and Liu Z: Emerging role of ferroptosis in diabetic kidney disease: Molecular mechanisms and therapeutic opportunities. Int J Biol Sci. 19:2678–2694. 2023. View Article : Google Scholar : PubMed/NCBI | |
Alicic RZ, Rooney MT and Tuttle KR: Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol. 12:2032–2045. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Liu C, He Y, Zhao T, Yu S, Wang Z, He C, Li F, Ma S and Zhang S: Predicting and validating the regulation of podocyte injury and treatment of diabetic kidney disease by Yinhuo Tang. J Vis Exp. 2025. | |
Li Q, Shang J and Inagi R: Control of mitochondrial quality: A promising target for diabetic kidney disease treatment. Kidney Int Rep. 10:994–1010. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tung CW, Hsu YC, Shih YH, Chang PJ and Lin CL: Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton). 23 (Suppl 4):S32–S37. 2018. View Article : Google Scholar | |
Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y and Duan H: NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol. 478:115–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Wang Q, Han B, Chen Y, Qiao X and Wang L: CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis. 12:5232021. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Li W, Li W, Xiong L, Li G and Ma R: Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF-κB pathway under high glucose conditions. Int J Mol Med. 34:167–176. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Ma Y, Xie D and Jiang H: ManNAc protects against podocyte pyroptosis via inhibiting mitochondrial damage and ROS/NLRP3 signaling pathway in diabetic kidney injury model. Int Immunopharmacol. 107:1087112022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li X, Zhao M, Wu Y, Xu Y, Li X, Fu L, Han L, Zhou W, Hu Q, et al: Macrophage-derived exosomes promote activation of NLRP3 inflammasome and autophagy deficiency of mesangial cells in diabetic nephropathy. Life Sci. 330:1219912023. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhang K, Hou L, Liao J, Zhang H, Han Q, Guo J, Li Y, Hu L, Pan J, et al: Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/NLRP3 pathway in diabetic nephropathy. Life Sci. 322:1216562023. View Article : Google Scholar : PubMed/NCBI | |
Cliff CL, Squires PE and Hills CE: Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cell Commun Signal. 22:3512024. View Article : Google Scholar : PubMed/NCBI | |
Ding Y and Choi ME: Regulation of autophagy by TGF-β: Emerging role in kidney fibrosis. Semin Nephrol. 34:62–71. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abudoureyimu A, Chen C, Hu Y, Nuermaimaiti D and Liu T: Quercetin alleviates diabetic nephropathy by inhibiting M1 macrophage polarization via targeting NLRC5/NLRP3 pathway. Cell Immunol. 414:1049972025. View Article : Google Scholar : PubMed/NCBI | |
Li JM, Song ZH, Li Y, Chen HW, Li H, Yuan L, Li J, Lv WY, Liu L and Wang N: NR4A1 silencing alleviates high-glucose-stimulated HK-2 cells pyroptosis and fibrosis via hindering NLRP3 activation and PI3K/AKT pathway. World J Diabetes. 16:975442025. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Hu L, Chen R, Chen Y, Liu H and Wei J: Unfolded protein response-activated NLRP3 inflammasome contributes to pyroptotic and apoptotic podocyte injury in diabetic kidney disease via the CHOP-TXNIP axis. Cell Signal. 130:1117022025. View Article : Google Scholar : PubMed/NCBI | |
Ma ZA, Wang LX, Zhang H, Li HZ, Dong L, Wang QH, Wang YS, Pan BC, Zhang SF, Cui HT and Lv SQ: Jianpi Gushen Huayu decoction ameliorated diabetic nephropathy through modulating metabolites in kidney, and inhibiting TLR4/NF-κB/NLRP3 and JNK/P38 pathways. World J Diabetes. 15:502–518. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Ding M, Chen F, Zhu D and Xie X: Breviscapine alleviates podocyte injury by inhibiting NF-κB/NLRP3-mediated pyroptosis in diabetic nephropathy. PeerJ. 11:e148262023. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Qin Z, Zhang C, Mi X, Zhang C, Zhou F, Wang J, Zhang L and Hua F: TRIM29 promotes podocyte pyroptosis in diabetic nephropathy through the NF-kB/NLRP3 inflammasome pathway. Cell Biol Int. 47:1126–1135. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Liu C, Ren L, Li Y, Yang H, Yu Y and Yu W: Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. Pharm Biol. 61:427–436. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang M, Zhong H, Xie N, Wang Y, Ding S and Su X: LncRNA SNHG16 regulates RAS and NF-κB pathway-mediated NLRP3 inflammasome activation to aggravate diabetes nephropathy through stabilizing TLR4. Acta Diabetol. 60:563–577. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Long W, Zhang H, Zhao M, Gao M, Guo W and Yu L: Irbesartan ameliorates diabetic nephropathy by activating the Nrf2/Keap1 pathway and suppressing NLRP3 inflammasomes in vivo and in vitro. Int Immunopharmacol. 131:1118442024. View Article : Google Scholar : PubMed/NCBI | |
Lv C, Cheng T, Zhang B, Sun K and Lu K: Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail. 45:21651032023. View Article : Google Scholar : PubMed/NCBI | |
Pedruzzi LM, Stockler-Pinto MB, Leite M Jr and Mafra D: Nrf2-keap1 system versus NF-κB: The good and the evil in chronic kidney disease? Biochimie. 94:2461–2466. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang Y, Yang J and Liu G: Melatonin protects against diabetic kidney disease via the SIRT1/NLRP3 signalling pathway. Nephrology (Carlton). 30:e700732025. View Article : Google Scholar : PubMed/NCBI | |
Li K, Wang YJ, Wei K, Li WL, Liu YB, Hu JN, Chang WG, Zhang WX, Chen L and Li W: Ginsenoside Rg2 alleviates HFD/STZ-induced diabetic nephropathy by inhibiting pyroptosis via NF-κB/NLRP3 signaling pathways. Am J Chin Med. 53:909–930. 2025. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wang J, Chen Y, Cheng Y, Wang Y, Xu N, Wang H, Wang L, Chi Y, Ye X, et al: Canagliflozin attenuates podocyte inflammatory injury through suppressing the TXNIP/NLRP3 signaling pathway in diabetic kidney disease Mice. Inflammation. Mar 11–2025.(Epub ahead of print). | |
An X, Zhang Y, Cao Y, Chen J, Qin H and Yang L: Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients. 12:15162020. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Zhu C, Yang H, Deng J and Fan D: Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res. 155:1047462020. View Article : Google Scholar : PubMed/NCBI | |
Du L, Wang J, Chen Y, Li X, Wang L, Li Y, Jin X, Gu X, Hao M, Zhu X, et al: Novel biphenyl diester derivative AB-38b inhibits NLRP3 inflammasome through Nrf2 activation in diabetic nephropathy. Cell Biol Toxicol. 36:243–260. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhu X, Li L, Ma T, Shi M, Yang Y and Fan Q: A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes. 12:1297–1309. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Yang Z, Zhang C and Shi Y, Han W, Song S, Mu L, Du C and Shi Y: Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism. 118:1547482021. View Article : Google Scholar : PubMed/NCBI | |
Hou Q, Kan S, Wang Z, Shi J, Zeng C, Yang D, Jiang S and Liu Z: Inhibition of HDAC6 with CAY10603 ameliorates diabetic kidney disease by suppressing NLRP3 inflammasome. Front Pharmacol. 13:9383912022. View Article : Google Scholar : PubMed/NCBI | |
Irodi A, Zhu Z, Grzybowski A, Wu Y, Cheung CY, Li H, Tan G and Wong TY: The evolution of diabetic retinopathy screening. Eye (Lond). 39:1040–1046. 2025. View Article : Google Scholar : PubMed/NCBI | |
Homme RP, Singh M, Majumder A, George AK, Nair K, Sandhu HS, Tyagi N, Lominadze D and Tyagi SC: Remodeling of retinal architecture in diabetic retinopathy: Disruption of ocular physiology and visual functions by inflammatory gene products and pyroptosis. Front Physiol. 9:12682018. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Zhang X, Liao N, Mi L, Peng Y, Liu B, Zhang S and Wen F: Enhanced expression of NLRP3 inflammasome-related inflammation in diabetic retinopathy. Invest Ophthalmol Vis Sci. 59:978–985. 2018. View Article : Google Scholar : PubMed/NCBI | |
Loukovaara S, Piippo N, Kinnunen K, Hytti M, Kaarniranta K and Kauppinen A: NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy. Acta Ophthalmol. 95:803–808. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marneros AG: Role of inflammasome activation in neovascular age-related macular degeneration. FEBS J. 290:28–36. 2023. View Article : Google Scholar : PubMed/NCBI | |
Giuliani AL, Sarti AC, Falzoni S and Di Virgilio F: The P2X7 receptor-interleukin-1 liaison. Front Pharmacol. 8:1232017. View Article : Google Scholar : PubMed/NCBI | |
Kong H, Zhao H, Chen T, Song Y and Cui Y: Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy. Cell Death Dis. 13:3362022. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zhao M, Zhao S, Lu Q, Ni L, Zou C, Lu L, Xu X, Guan H, Zheng Z and Qiu Q: Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: A novel inhibitory effect of minocycline. Inflamm Res. 66:157–166. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Yao Y, Zheng W, Zheng X, Xie M and Huang L: Nitric oxide mediates negative feedback on the TXNIP/NLRP3 inflammasome pathway to prevent retinal neurovascular unit dysfunction in early diabetic retinopathy. Free Radic Biol Med. 233:279–291. 2025. View Article : Google Scholar : PubMed/NCBI | |
Du J, Wang Y, Tu Y, Guo Y, Sun X, Xu X, Liu X, Wang L, Qin X, Zhu M and Song E: A prodrug of epigallocatechin-3-gallate alleviates high glucose-induced pro-angiogenic factor production by inhibiting the ROS/TXNIP/NLRP3 inflammasome axis in retinal Müller cells. Exp Eye Res. 196:1080652020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhu M, Dou Y, Xue A, Chen X, Leng K, Dong L and Cao G: Knockdown of KCNQ1OT1 alleviates the activation of NLRP3 inflammasome through miR-17-5p/TXNIP axis in retinal Müller cells. Curr Eye Res. 49:1285–1294. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yao G, Tong J, Xie H, Zheng X, Zhang H and Xie Z: MSC-derived small extracellular vesicles alleviate diabetic retinopathy by delivering miR-22-3p to inhibit NLRP3 inflammasome activation. Stem Cells. 42:64–75. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xi X, Wang M, Chen Q, Ma J, Zhang J and Li Y: DNMT1 regulates miR-20a/TXNIP-mediated pyroptosis of retinal pigment epithelial cells through DNA methylation. Mol Cell Endocrinol. 577:1120122023. View Article : Google Scholar : PubMed/NCBI | |
Park C, Cha HJ, Hwangbo H, Bang E, Hong SH, Song KS, Noh JS, Kim DH, Kim GY and Choi YH: β-asarone alleviates high-glucose-induced oxidative damage via inhibition of ROS generation and inactivation of the NF-κB/NLRP3 inflammasome pathway in human retinal pigment epithelial cells. Antioxidants (Basel). 12:14102023. View Article : Google Scholar : PubMed/NCBI | |
Zarneshan SN, Fakhri S, Kiani A, Abbaszadeh F, Hosseini SZ, Mohammadi-Noori E and Echeverría J: Polydatin attenuates Alzheimer's disease induced by aluminum chloride in rats: Evidence for its antioxidant and anti-inflammatory effects. Front Pharmacol. 16:15743232025. View Article : Google Scholar : PubMed/NCBI | |
Dahran N, Alobaidy MA, Owaydhah WH, Soubahi EKA, Eisa AA, Nasreldin N, Gadalla H, Refaat B and El-Boshy ME: Polydatin mitigates lead-induced nephropathy by modulating oxidative stress, inflammation, and the AMPK/AKT/Nrf2 pathway in rats. Biol Trace Elem Res. Mar 12–2025.(Epub ahead of print). View Article : Google Scholar | |
Wang B, Qu X, Su A and Zhu H: PD protects Müller cells through the SIRT1/NLRP3 inflammasome pathway. Int Ophthalmol. 44:972024. View Article : Google Scholar : PubMed/NCBI | |
Xiang XH, Wei J, Wang XF, Xu Q, Yu CL, He CL, Long T, Guo MS, Chen X, Zhou XG, et al: Lychee seed polyphenol ameliorates DR via inhibiting inflammasome/apoptosis and angiogenesis in hRECs and db/db mice. Biomed Pharmacother. 167:1154782023. View Article : Google Scholar : PubMed/NCBI | |
Bang E, Park C, Hwangbo H, Shim JH, Leem SH, Hyun JW, Kim GY and Choi YH: Spermidine attenuates high glucose-induced oxidative damage in retinal pigment epithelial cells by inhibiting production of ROS and NF-κB/NLRP3 inflammasome pathway. Int J Mol Sci. 24:105502023. View Article : Google Scholar : PubMed/NCBI | |
Choi YH: Reduction of high glucose-induced oxidative injury in human retinal pigment epithelial cells by sarsasapogenin through inhibition of ROS generation and inactivation of NF-κB/NLRP3 inflammasome pathway. Genes Genomics. 45:1153–1163. 2023. View Article : Google Scholar : PubMed/NCBI | |
ElSayed MH, Elbayoumi KS, Eladl MA, Mohamed AAK, Hegazy A, El-Sherbeeny NA, Attia MA, Hisham FA, Saleh MAK, Elaskary A, et al: Memantine mitigates ROS/TXNIP/NLRP3 signaling and protects against mouse diabetic retinopathy: Histopathologic, ultrastructural and bioinformatic studies. Biomed Pharmacother. 163:1147722023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li Z and Fang J: Scutellarin alleviates diabetic retinopathy via the suppression of nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 inflammasome activation. Curr Eye Res. 49:180–187. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ge K, Wang Y, Li P, Li M, Zhang W, Dan H, Hu X, Zhou J, Yang Q, Wang J and Song Z: Down-expression of the NLRP3 inflammasome delays the progression of diabetic retinopathy. Microvasc Res. 139:1042652022. View Article : Google Scholar : PubMed/NCBI | |
Alenezi FO, Nader MA, El-Kashef DH and Abdelmageed ME: Dapansutrile mitigates concanavalin A-induced autoimmune hepatitis: Involvement of NLRP3/IL-1β and JNK/p38 MAPK pathways. Biomed Pharmacother. 186:1180262025. View Article : Google Scholar : PubMed/NCBI | |
Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, et al: A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 21:248–255. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bellemare M, Bourcier L, Iglesies-Grau J, Boulet J, O'Meara E and Bouabdallaoui N: Mechanisms of diabetic cardiomyopathy: Focus on inflammation. Diabetes Obes Metab. 27:2326–2338. 2025. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zeng Y, Geng K, Guo M, Teng FY, Yan PJ, Lei Y, Long Y, Jiang ZZ, Law BY and Xu Y: The role of IL-1 family cytokines in diabetic cardiomyopathy. Metabolism. 163:1560832025. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Ma TY, Huang K, Zhong JH, Lu SJ and Li JJ: Role of pyroptosis in diabetic cardiomyopathy: An updated review. Front Endocrinol (Lausanne). 14:13229072024. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Xing S, Zhang L, Lu J, Li D, Wang Y, Ma Y, Chang W and Su M: Amniotic mesenchymal stem cells attenuate diabetic cardiomyopathy by inhibiting pyroptosis via modulation of the TLR4/NF-κb/NLRP3 pathway. Front Cell Dev Biol. 13:16319732025. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Ai C, Guo C, Li S, Niu J, Meng X and Zhang Z: UCP2 inhibition exaggerates diabetic cardiomyopathy by facilitating the activation of NLRP3 and pyroptosis. Diabetol Metab Syndr. 17:2672025. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Fu L, Xu Y, Tao L, Guo T, Fang G, Zhang G, Wang S, Qin T, Luo P and Shen X: Cyclovirobuxine D ameliorates experimental diabetic cardiomyopathy by inhibiting cardiomyocyte pyroptosis via NLRP3 in vivo and in vitro. Front Pharmacol. 13:9065482022. View Article : Google Scholar : PubMed/NCBI | |
Zhang GL, Liu Y, Liu YF, Huang XT, Tao Y, Chen ZH and Lai HL: Teneligliptin mitigates diabetic cardiomyopathy by inhibiting activation of the NLRP3 inflammasome. World J Diabetes. 15:724–734. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Ai C, Bai M, Niu J and Zhang Z: NLRP3 inflammasome/pyroptosis: A key driving force in diabetic cardiomyopathy. Int J Mol Sci. 23:106322022. View Article : Google Scholar : PubMed/NCBI | |
Levick SP and Widiapradja A: The diabetic cardiac fibroblast: Mechanisms underlying phenotype and function. Int J Mol Sci. 21:9702020. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Randive R and Stewart JA: Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes. 5:860–867. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang J, Liang X, Wu Z, Xue J, Yin L, Wei L and Zhang X: Ghrelin inhibits myocardial pyroptosis in diabetic cardiomyopathy by regulating ERS and NLRP3 inflammasome crosstalk through the PI3K/AKT pathway. J Drug Target. 32:148–158. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ke X, Li Z and Li B: Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Biophys Res Commun. 514:1–8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y and An F: NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 9:e1047712014. View Article : Google Scholar : PubMed/NCBI | |
Jiao A, Liu H, Wang H, Yu J, Gong L, Zhang H and Fu L: piR112710 attenuates diabetic cardiomyopathy through inhibiting Txnip/NLRP3-mediated pyroptosis in db/db mice. Cell Signal. 122:1113332024. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Chen Q, Li S and Luo J: Mesenchymal stem cells ameliorate inflammation and pyroptosis in diabetic cardiomyopathy via the miRNA-223-3p/NLRP3 pathway. Diabetol Metab Syndr. 16:1462024. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Zhang X, Chen X, Yang S and Chen H: Inhibition of miR-223 attenuates the NLRP3 inflammasome activation, fibrosis, and apoptosis in diabetic cardiomyopathy. Life Sci. 256:1179802020. View Article : Google Scholar : PubMed/NCBI | |
Shi P, Zhao XD, Shi KH, Ding XS and Tao H: MiR-21-3p triggers cardiac fibroblasts pyroptosis in diabetic cardiac fibrosis via inhibiting androgen receptor. Exp Cell Res. 399:1124642021. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Fang H, Xu Q, Xu C, Yang L and Huang C: LncRNA GAS5 inhibits NLRP3 inflammasome activation-mediated pyroptosis in diabetic cardiomyopathy by targeting miR-34b-3p/AHR. Cell Cycle. 19:3054–3065. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Liu R, Xue M, Qiao Y, Chen Y, Long G, Tian X, Hu Y, Zhou P, Dong X, et al: Spleen tyrosine kinase-induced JNK-dependent NLRP3 activation is involved in diabetic cardiomyopathy. Int J Mol Med. 43:2481–2490. 2019.PubMed/NCBI | |
Yamagishi SI, Edelstein D, Du XL and Brownlee M: Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes. 50:1491–1494. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y, Mizuguchi J, Schweighoffer E, Tybulewicz V and Mitsuyama M: Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol. 14:1247–1255. 2013. View Article : Google Scholar : PubMed/NCBI | |
Phungphong S, Suthivanich P, Boonhoh W, Punsawad C, Cheng Z and Bupha-Intr T: Targeting NLRP3 inflammasome attenuates cardiac pyroptosis and fibrosis in estrogen-deficient diabetic rats. Pflugers Arch. 477:935–952. 2025. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Sun F, Wang Q, Li S, Wang L, Li H, Su Y, Yang H and Dong B: Icariin alleviates cardiomyocyte pyroptosis through AMPK-NLRP3 pathway to ameliorates diabetic cardiomyopathy. Int Immunopharmacol. 156:1146902025. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li Y, Li L, Liang H, Ye H, Kang P, Li Z, Yu Y and Gao Q: Effect of NLRP3 gene knockdown on pyroptosis and ferroptosis in diabetic cardiomyopathy injury. BMC Cardiovasc Disord. 24:3512024. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zeng C, Zhang Y, Xin Y, Deng S and Hu X: Protective role of hydrogen sulfide against diabetic cardiomyopathy by inhibiting pyroptosis and myocardial fibrosis. Biomed Pharmacother. 175:1166132024. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Liu H, Yang Y and Wang H: The role of H2S Regulating NLRP3 inflammasome in diabetes. Int J Mol Sci. 23:48182022. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Xie Y, Wang H, Chen W, Yang Z, Zhang L, Deng Q, Cheng T, Li M, Ju J, et al: Berberine inhibits NLRP3 inflammasome activation by regulating mTOR/mtROS axis to alleviate diabetic cardiomyopathy. Eur J Pharmacol. 964:1762532024. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Gong D, Liu R, Wang R, Chen D, Yuan T, Wang S, Xing C, Lv Y, Du G and Fang L: Puerarin Inhibits NLRP3-caspase-1-GSDMD-mediated pyroptosis via P2X7 receptor in cardiomyocytes and macrophages. Int J Mol Sci. 24:131692023. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Yang F, Wang Y, Qin Y, Xian H, Che H and Wang L: Silymarin ameliorates diabetic cardiomyopathy via inhibiting TGF-β1/Smad signaling. Cell Biol Int. 43:65–72. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Zhang S, Lou H, Mikaye MS, Xu R, Meng Z, Du M, Tang P, Chen Z, Chen Y, et al: Aloe-emodin derivative, an anthraquinone compound, attenuates pyroptosis by targeting NLRP3 inflammasome in diabetic cardiomyopathy. Pharmaceuticals (Basel). 16:12752023. View Article : Google Scholar : PubMed/NCBI | |
Parashar A, Mehta V and Malairaman U: Type 2 diabetes mellitus is associated with social recognition memory deficit and altered dopaminergic neurotransmission in the amygdala. Ann Neurosci. 24:212–220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Riederer P, Korczyn AD, Ali SS, Bajenaru O, Choi MS, Chopp M, Dermanovic-Dobrota V, Grünblatt E, Jellinger KA, Kamal MA, et al: The diabetic brain and cognition. J Neural Transm (Vienna). 124:1431–1454. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mooradian AD: Central nervous system complications of diabetes mellitus-a perspective from the blood-brain barrier. Brain Res Brain Res Rev. 23:210–218. 1997. View Article : Google Scholar : PubMed/NCBI | |
Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE and Biessels GJ: Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 14:329–340. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Cui X, Zacharek A, Cui Y, Roberts C and Chopp M: White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke. 42:445–452. 2011. View Article : Google Scholar : PubMed/NCBI | |
Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A and Giugliano D: Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 106:2067–2072. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mamo JC, Lam V, Brook E, Mooranian A, Al-Salami H, Fimognari N, Nesbit M and Takechi R: Probucol prevents blood-brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res. 16:87–97. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H and Peng S: Progress in the pathogenesis of diabetic encephalopathy: The key role of neuroinflammation. Diabetes Metab Res Rev. 40:e38412024. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Bi W, Liu X, Li S, Qiu Y, Huang C, Lv R and Yin Q: Single-cell sequencing analysis of the db/db mouse hippocampus reveals cell-type-specific insights into the pathobiology of diabetes-associated cognitive dysfunction. Front Endocrinol (Lausanne). 13:8910392022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang H, Liu M, Guo W and Yu L: Microglia NLRP3 inflammasomes activation involving diabetic neuroinflammation in diabetic mice and BV2 cells. Curr Pharm Des. 27:2802–2816. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yao J, Li Y, Liu X, Liang W, Li Y, Wu L, Wang Z and Song W: FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression. Neural Regen Res. 20:2068–2083. 2025. View Article : Google Scholar : PubMed/NCBI | |
Sim AY, Kim JY, Lee YH and Lee JE: Neuroprotective roles of SGLT2 and DPP4 inhibitors: Modulating ketone metabolism and suppressing NLRP3 inflammasome in T2D induced Alzheimer's disease. Exp Neurol. 390:1152712025. View Article : Google Scholar : PubMed/NCBI | |
Hu T, Lu XY, Shi JJ, Liu XQ, Chen QB, Wang Q, Chen YB and Zhang SJ: Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med. 24:3449–3459. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu T, Wei JW, Zheng JY, Luo QY, Hu XR, Du Q, Cai YF and Zhang SJ: Metformin improves cognitive dysfunction through SIRT1/NLRP3 pathway-mediated neuroinflammation in db/db mice. J Mol Med (Berl). 102:1101–1115. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Cheng L, Chen Y, Li W, Guo Q and Miao Y: TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy. Am J Physiol Cell Physiol. 327:C1481–C1496. 2024. View Article : Google Scholar : PubMed/NCBI | |
Iwasa M, Kato H, Iwashita K, Yamakage H, Kato S, Saito S, Ihara M, Nishimura H, Kawamoto A, Suganami T, et al: Taxifolin suppresses inflammatory responses of high-glucose-stimulated mouse microglia by attenuating the TXNIP-NLRP3 axis. Nutrients. 15:27382023. View Article : Google Scholar : PubMed/NCBI | |
Kato H, Iwashita K, Iwasa M, Kato S, Yamakage H, Suganami T, Tanaka M and Satoh-Asahara N: Imeglimin exhibits novel anti-inflammatory effects on high-glucose-stimulated mouse microglia through ULK1-mediated suppression of the TXNIP-NLRP3 axis. Cells. 13:2842024. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Li J, Wu X and Liu F: Activation of spleen tyrosine kinase (SYK) contributes to neuronal pyroptosis and cognitive impairment in diabetic mice via the NLRP3/Caspase-1/GSDMD signaling pathway. Exp Gerontol. 198:1126262024. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhou L, Wang L, Mao Z, Zheng P, Zhang F, Zhang H and Liu H: MUC1 attenuates neutrophilic airway inflammation in asthma by reducing NLRP3 inflammasome-mediated pyroptosis through the inhibition of the TLR4/MyD88/NF-κB pathway. Respir Res. 24:2552023. View Article : Google Scholar : PubMed/NCBI | |
Su WJ, Li JM, Zhang T, Cao ZY, Hu T, Zhong SY, Xu ZY, Gong H and Jiang CL: Microglial NLRP3 inflammasome activation mediates diabetes-induced depression-like behavior via triggering neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry. 126:1107962023. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Lin T, Shi M and Wu P: Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease. Am J Physiol Regul Integr Comp Physiol. 327:R410–R422. 2024. View Article : Google Scholar : PubMed/NCBI | |
An JF, Su H, Zhang CQ, Wang XT, Zhang GQ, Fu LY, Xu YN, Tao L and Shen XC: Metformin activation of sirtuin 3 signaling regulates mitochondrial function improves diabetes-associated cognitive impairment. Diabetes Metab Syndr Obes. 18:2317–2330. 2025. View Article : Google Scholar : PubMed/NCBI | |
Padhy DS, Aggarwal P, Velayutham R and Banerjee S: Aerobic exercise and metformin attenuate the cognitive impairment in an experimental model of type 2 diabetes mellitus: Focus on neuroinflammation and adult hippocampal neurogenesis. Metab Brain Dis. 40:922025. View Article : Google Scholar : PubMed/NCBI | |
Zhai Y, Meng X, Ye T, Xie W, Sun G and Sun X: Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules. 23:5222018. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Sun H, Hua W, Chang H, Chen W and Ma S: Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive dysfunction by regulating the nrf-2/HO-1 axis and the NLRP3 inflammasome pathway in diabetic rats. Eur J Pharmacol. 966:1763442024. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Li H, Wang Y, Su X, Li Y, Yan M, Ma L and Che H: Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats. Front Pharmacol. 11:5352020. View Article : Google Scholar : PubMed/NCBI | |
Zhai Y, Meng X, Luo Y, Wu Y, Ye T, Zhou P, Ding S, Wang M, Lu S, Zhu L, et al: Notoginsenoside R1 ameliorates diabetic encephalopathy by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Oncotarget. 9:9344–9363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Li M, Liu X, Zhang L, Zhang R and Cai F: Nerolidol rescues hippocampal injury of diabetic rats through inhibiting NLRP3 inflammasome and regulation of MAPK/AKT pathway. Biofactors. 50:1076–1100. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Yao Y, Wang J and Peng JY: Dioscin ameliorates diabetes cognitive dysfunction via adjusting P2X7R/NLRP3 signal. Int Immunopharmacol. 101:1083142021. View Article : Google Scholar : PubMed/NCBI | |
Ye T, Meng X, Wang R, Zhang C, He S, Sun G and Sun X: Gastrodin alleviates cognitive dysfunction and depressive-like behaviors by inhibiting ER stress and NLRP3 inflammasome activation in db/db mice. Int J Mol Sci. 19:39772018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Bai YY, Hong ZS, Xie J and Tian Y: Isolation, identification, activity evaluation, and mechanism of action of neuroprotective peptides from walnuts: A review. Nutrients. 15:40852023. View Article : Google Scholar : PubMed/NCBI | |
Harandi S, Golchin L, Ansari M, Moradi A, Shabani M and Sheibani V: Antiamnesic effects of walnuts consumption on scopolamine-induced memory impairments in rats. Basic Clin Neurosci. 6:91–99. 2015.PubMed/NCBI | |
Li Y, Dang Q, Shen Y, Guo L, Liu C, Wu D, Fang L, Leng Y and Min W: Therapeutic effects of a walnut-derived peptide on NLRP3 inflammasome activation, synaptic plasticity, and cognitive dysfunction in T2DM mice. Food Funct. 15:2295–2313. 2024. View Article : Google Scholar : PubMed/NCBI | |
Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM and Dixit VD: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 17:179–188. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Nardo D and Latz E: NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 32:373–379. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Tu J, Ji L, Wang R, Zhou R, Lei X, Hu L and Huang H: Icariin inhibition of NLRP3 mediated Leydig cell pyroptosis and insulin resistance ameliorates spermatogenesis disorders in obese mice. Int Immunopharmacol. 151:1142802025. View Article : Google Scholar : PubMed/NCBI | |
Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ and Ting JP: Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 12:408–415. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nițulescu IM, Ciulei G, Cozma A, Procopciuc LM and Orășan OH: From innate immunity to metabolic disorder: A review of the NLRP3 inflammasome in diabetes mellitus. J Clin Med. 12:60222023. View Article : Google Scholar : PubMed/NCBI | |
Lu CP, Huang CY, Wang SH, Chiu CH, Li LH, Hua KF and Wu TH: Improvement of hyperglycemia in a murine model of insulin resistance and high glucose- and inflammasome-mediated IL-1β expressions in macrophages by silymarin. Chem Biol Interact. 290:12–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aye ILMH, Jansson T and Powell TL: Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts. Mol Cell Endocrinol. 381:46–55. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ibarra Urizar A, Prause M, Wortham M, Sui Y, Thams P, Sander M, Christensen GL and Billestrup N: Beta-cell dysfunction induced by non-cytotoxic concentrations of Interleukin-1β is associated with changes in expression of beta-cell maturity genes and associated histone modifications. Mol Cell Endocrinol. 496:1105242019. View Article : Google Scholar : PubMed/NCBI | |
Ahmad R, Thomas R, Kochumon S and Sindhu S: Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity. Immun Inflamm Dis. 5:318–335. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zeng H, Xu M, Huang C, Tao L, Li J, Zhang T, Chen H, Xia J, Li C and Li X: Oleanolic acid improves obesity-related inflammation and insulin resistance by regulating macrophages activation. Front Pharmacol. 12:6974832021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Sun R, Lin X, Wu L, Chen H, Shen S, Li Y, Wei Y and Deng G: Procyanidins and its metabolites by gut microbiome improves insulin resistance in gestational diabetes mellitus mice model via regulating NF-κB and NLRP3 inflammasome pathway. Biomed Pharmacother. 151:1130782022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ding X, Wu R, Tong B, Zhao L, Lv H, Meng X, Liu Y, Ren B, Li J, et al: Novel sesquiterpene glycoside from loquat leaf alleviates type 2 diabetes mellitus combined with nonalcoholic fatty liver disease by improving insulin resistance, oxidative stress, inflammation, and gut microbiota composition. J Agric Food Chem. 69:14176–14191. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stutz A, Golenbock DT and Latz E: Inflammasomes: Too big to miss. J Clin Invest. 119:3502–3511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wan Z, Fan Y, Liu X, Xue J, Han Z, Zhu C and Wang X: NLRP3 inflammasome promotes diabetes-induced endothelial inflammation and atherosclerosis. Diabetes Metab Syndr Obes. 12:1931–1942. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhou D, Su Y, Liu H, Su Q, Shen T, Zhang M, Mi X, Zhang Y, Yue S, et al: PDIA4 targets IRE1α/sXBP1 to alleviate NLRP3 inflammasome activation and renal tubular injury in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis. 1871:1676452025. View Article : Google Scholar : PubMed/NCBI | |
Santos KN, Bizzotto JQ, Bueno-Pereira TO, Romao-Veiga M, Ribeiro-Vasques VR, Oliveira LRC, Sandrim VC and Nunes PR: Preeclamptic plasma disrupts endothelial function and promotes inflammation in endothelial cells: beneficial effects of glibenclamide and MCC950 in this scenario. J Recept Signal Transduct Res. 45:237–249. 2025. View Article : Google Scholar : PubMed/NCBI | |
Deng D, Ma L, Shen J, Huang L, Zhang T, Yang X, Huang S, Zhao W, Zhou Y, Fan S, et al: PD-1 attenuates neuropathic pain by ameliorating NLRP3 inflammasome-mediated microglia pyroptosis. Mol Neurobiol. Jul 19–2025.(Epub ahead of print). View Article : Google Scholar | |
Chen Y, Luo Y, Liu Y, Qiu X, Luo D and Liu A: Mediation of macrophage M1 polarization dynamics change by ubiquitin-autophagy-pathway regulated NLRP3 inflammasomes in PD-1 inhibitor-related myocardial inflammatory injury. Inflamm Res. 74:562025. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Rangel E and Inzucchi SE: Metformin: Clinical use in type 2 diabetes. Diabetologia. 60:1586–1593. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, et al: Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 214:3219–3238. 2017. View Article : Google Scholar : PubMed/NCBI | |
Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, Pistell P, Newman S, Carter R, Laque A, et al: Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18:519–532. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Ren Y, Zou W, Ji S and Shen W: Neutrophil extracellular traps promote erectile dysfunction in rats with diabetes mellitus by enhancing NLRP3-mediated pyroptosis. Sci Rep. 14:164572024. View Article : Google Scholar : PubMed/NCBI |