
Role of the tumor microenvironment in promoting treatment resistance in urothelial carcinoma (Review)
- Authors:
- Li Yan
- Pengxiao Su
- Xiaoke Sun
-
Affiliations: Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China, Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China - Published online on: August 19, 2025 https://doi.org/10.3892/mmr.2025.13658
- Article Number: 293
-
Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Warrick JI: Clinical significance of histologic variants of bladder cancer. J Natl Compr Canc Netw. 15:1268–1274. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI | |
Nadal R, Valderrama BP and Bellmunt J: Progress in systemic therapy for advanced-stage urothelial carcinoma. Nat Rev Clin Oncol. 21:8–27. 2024. View Article : Google Scholar : PubMed/NCBI | |
Babjuk M, Burger M, Capoun O, Cohen D, Compérat EM, Dominguez Escrig JL, Gontero P, Liedberg F, Masson-Lecomte A, Mostafid AH, et al: European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur Urol. 81:75–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Alfred Witjes J, Max Bruins H, Carrión A, Cathomas R, Compérat E, Efstathiou JA, Fietkau R, Gakis G, Lorch A, Martini A, et al: European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2023 guidelines. Eur Urol. 85:17–31. 2024. View Article : Google Scholar : PubMed/NCBI | |
Vlachostergios PJ and Faltas BM: Treatment resistance in urothelial carcinoma: an evolutionary perspective. Nat Rev Clin Oncol. 15:495–509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Pei D, Liu Y, Yu Y, Guo J, Liu N and Kang Z: Identification of a novel tumor microenvironment prognostic signature for bladder urothelial carcinoma. Front Oncol. 12:8188602022. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Zhang H, Zhang X, Zhang Z, Jie J, Xie K, Li F and Tan W: Identification of tumor microenvironment-related signature for predicting prognosis and immunotherapy response in patients with bladder cancer. Front Genet. 13:9237682022. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Li Y, Lu Y, Wang M, Li Y, Wang C, Li Q and Zhao H: The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ. 9:e113062021. View Article : Google Scholar : PubMed/NCBI | |
Biffi G and Tuveson DA: Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 101:147–176. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI | |
Li WM, Chan TC, Huang SK, Wu WJ, Ke HL, Liang PI, Wei YC, Shiue YL and Li CF: Prognostic utility of FBLN2 expression in patients with urothelial carcinoma. Front Oncol. 10:5703402020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Liu W, Tang H, Wang X, Liu X, Yu Z, Gao Y, Wang X and Wei M: Hypoxia-related prognostic model in bladder urothelial reflects immune cell infiltration. Am J Cancer Res. 11:5076–5093. 2021.PubMed/NCBI | |
He X, Yang Y, Li L, Zhang P, Guo H, Liu N, Yang X and Xu F: Engineering extracellular matrix to improve drug delivery for cancer therapy. Drug Discov Today. 25:1727–1734. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liang T, Tao T, Wu K, Liu L, Xu W, Zhou D, Fang H, Ding Q, Huang G and Wu S: Cancer-associated fibroblast-induced remodeling of tumor microenvironment in recurrent bladder cancer. Adv Sci (Weinh). 10:e23032302023. View Article : Google Scholar : PubMed/NCBI | |
Noeraparast M, Krajina K, Pichler R, Niedersüß-Beke D, Shariat SF, Grünwald V, Ahyai S and Pichler M: FGFR3 alterations in bladder cancer: Sensitivity and resistance to targeted therapies. Cancer Commun (Lond). 44:1189–1208. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee YC, Lam HM, Rosser C, Theodorescu D, Parks WC and Chan KS: The dynamic roles of the bladder tumour microenvironment. Nat Rev Urol. 19:515–533. 2022. View Article : Google Scholar : PubMed/NCBI | |
Caramelo B, Zagorac S, Corral S, Marqués M and Real FX: Cancer-associated fibroblasts in bladder cancer: Origin, biology, and therapeutic opportunities. Eur Urol Oncol. 6:366–375. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhong Q, Shou J, Ying J, Ling Y, Yu Y, Shen Z, Zhang Y, Li N, Shi Y and Zhou A: High PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor in urothelial carcinoma. Future Oncol. 17:2893–2905. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong D, Yao Y, Song J, Sun L and Zhang G: Cancer-associated fibroblasts regulate bladder cancer invasion and metabolic phenotypes through autophagy. Dis Markers. 2021:66452202021. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, An M, Luo Y, Diao X, Zhong W, Pang M, Lin Y, Chen J, Li Y, Kong Y, et al: PDGFRα(+)ITGA11(+) fibroblasts foster early-stage cancer lymphovascular invasion and lymphatic metastasis via ITGA11-SELE interplay. Cancer Cell. 42:682–700.e12. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yoshida GJ: Regulation of heterogeneous cancer-associated fibroblasts: The molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 39:1122020. View Article : Google Scholar : PubMed/NCBI | |
Rubio C, Munera-Maravilla E, Lodewijk I, Suarez-Cabrera C, Karaivanova V, Ruiz-Palomares R, Paramio JM and Dueñas M: Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: Can we turn demons into gods? Clin Transl Oncol. 21:391–403. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang CP, Liu LX and Shyr CR: Tumor-associated macrophages facilitate bladder cancer progression by increasing cell growth, migration, invasion and cytokine expression. Anticancer Res. 40:2715–2724. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leblond MM, Zdimerova H, Desponds E and Verdeil G: Tumor-associated macrophages in bladder cancer: Biological role, impact on therapeutic response and perspectives for immunotherapy. Cancers (Basel). 13:47122021. View Article : Google Scholar : PubMed/NCBI | |
Chiang Y, Lu LF, Tsai CL, Tsai YC, Wang CC, Hsueh FJ, Huang CY, Chen CH, Pu YS and Cheng JC: C-C chemokine receptor 4 (CCR4)-positive regulatory T cells interact with tumor-associated macrophages to facilitate metastatic potential after radiation. Eur J Cancer. 198:1135212024. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Zeng H, Liu Z, Jin K, Liu C, Yan S, Yu Y, You R, Zhang H, Chang Y, et al: Stromal tumor-associated macrophage infiltration predicts poor clinical outcomes in muscle-invasive bladder cancer patients. Ann Surg Oncol. 29:2495–2503. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Duan L, Li H, Liu X, Cai T, Yang Y, Yin Y, Chang W, Zhong L, Zhang L, et al: PD1(hi) CD200(hi) CD4(+) exhausted T cell increase immunotherapy resistance and tumour progression by promoting epithelial-mesenchymal transition in bladder cancer. Clin Transl Med. 13:e13032023. View Article : Google Scholar : PubMed/NCBI | |
Salkeni MA and Naing A: Interleukin-10 in cancer immunotherapy: From bench to bedside. Trends Cancer. 9:716–725. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen W: TGF-beta regulation of T cells. Annu Rev Immunol. 41:483–512. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li B, Jin K, Liu Z, Su X, Xu Z, Liu G, Xu J, Liu H, Chang Y, Wang Y, et al: Integrating molecular subtype and CD8(+) T cells infiltration to predict treatment response and survival in muscle-invasive bladder cancer. Cancer Immunol Immunother. 73:662024. View Article : Google Scholar : PubMed/NCBI | |
Bhardwaj N, Farkas AM, Gul Z and Sfakianos JP: Harnessing natural killer cell function for genitourinary cancers. Urol Clin North Am. 47:433–442. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wong JKM, McCulloch TR, Alim L, Omer N, Mehdi AM, Tuong ZK, Bonfim-Melo A, Chung E, Nicol A, Simpson F, et al: TGF-β signalling limits effector function capacity of NK cell anti-tumour immunity in human bladder cancer. EBioMedicine. 104:1051762024. View Article : Google Scholar : PubMed/NCBI | |
He C, Wang D, Shukla SK, Hu T, Thakur R, Fu X, King RJ, Kollala SS, Attri KS, Murthy D, et al: Vitamin B6 competition in the tumor microenvironment hampers antitumor functions of NK cells. Cancer Discov. 14:176–193. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang YJ, Xu XQ, Zhang YC, Hu PC and Yang WX: Establishment of a prognostic model related to tregs and natural killer cells infiltration in bladder cancer. World J Clin Cases. 11:3444–3456. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang YA, Ranti D, Bieber C, Galsky M, Bhardwaj N, Sfakianos JP and Horowitz A: NK cell-targeted immunotherapies in bladder cancer: Beyond checkpoint inhibitors. Bladder Cancer. 9:125–139. 2023. View Article : Google Scholar : PubMed/NCBI | |
Söhngen C, Thomas DJ, Skowron MA, Bremmer F, Eckstein M, Stefanski A, Driessen MD, Wakileh GA, Stühler K, Altevogt P, et al: CD24 targeting with NK-CAR immunotherapy in testis, prostate, renal and (luminal-type) bladder cancer and identification of direct CD24 interaction partners. FEBS J. 290:4864–4876. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fus ŁP and Górnicka B: Role of angiogenesis in urothelial bladder carcinoma. Cent European J Urol. 69:258–263. 2016.PubMed/NCBI | |
Jones A and Crew J: Vascular endothelial growth factor and its correlation with superficial bladder cancer recurrence rates and stage progression. Urol Clin North Am. 27:191–197. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bellmunt J, Hussain M and Dinney CP: Novel approaches with targeted therapies in bladder cancer. Therapy of bladder cancer by blockade of the epidermal growth factor receptor family. Crit Rev Oncol Hematol. 46 (Suppl):S85–S104. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wu ZS, Ding W, Cai J, Bashir G, Li YQ and Wu S: Communication of cancer cells and lymphatic vessels in cancer: Focus on bladder cancer. Onco Targets Ther. 12:8161–8177. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sleeman J, Schmid A and Thiele W: Tumor lymphatics. Semin Cancer Biol. 19:285–297. 2009. View Article : Google Scholar : PubMed/NCBI | |
Piao XM, Hwang B, Jeong P, Byun YJ, Kang HW, Seo SP, Kim WT, Lee JY, Ha YS, Lee YS, et al: Collagen type VI-α1 and 2 repress the proliferation, migration and invasion of bladder cancer cells. Int J Oncol. 59:372021. View Article : Google Scholar : PubMed/NCBI | |
Wątroba S, Wiśniowski T, Bryda J and Kurzepa J: The role of matrix metalloproteinases in pathogenesis of human bladder cancer. Acta Biochim Pol. 68:547–555. 2021.PubMed/NCBI | |
Dozmorov MG, Kyker KD, Saban R, Knowlton N, Dozmorov I, Centola MB and Hurst RE: Analysis of the interaction of extracellular matrix and phenotype of bladder cancer cells. BMC Cancer. 6:122006. View Article : Google Scholar : PubMed/NCBI | |
Sleeboom JJF, van Tienderen GS, Schenke-Layland K, van der Laan LJW, Khalil AA and Verstegen MMA: The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci Transl Med. 16:eadg38402024. View Article : Google Scholar : PubMed/NCBI | |
Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M and Giordano A: Multiple aspects of matrix stiffness in cancer progression. Front Oncol. 14:14066442024. View Article : Google Scholar : PubMed/NCBI | |
Eckstein M, Matek C, Wagner P, Erber R, Büttner-Herold M, Wild PJ, Taubert H, Wach S, Sikic D, Wullich B, et al: Proposal for a novel histological scoring system as a potential grading approach for muscle-invasive urothelial bladder cancer correlating with disease aggressiveness and patient outcomes. Eur Urol Oncol. 7:128–138. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Shen L, Li M, Sun J, Hao J, Li J, Zhu Z, Ge S, Zhang D, Guo H, et al: Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 83:1611–1627. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Liang Y, Xie F, Zhang Z, Zhang P, Zhao X, Zhang Z, Liang Z, Li D, Wang L, et al: Tumor-associated macrophage enhances PD-L1-mediated immune escape of bladder cancer through PKM2 dimer-STAT3 complex nuclear translocation. Cancer Lett. 593:2169642024. View Article : Google Scholar : PubMed/NCBI | |
Kalli M, Poskus MD, Stylianopoulos T and Zervantonakis IK: Beyond matrix stiffness: Targeting force-induced cancer drug resistance. Trends Cancer. 9:937–954. 2023. View Article : Google Scholar : PubMed/NCBI | |
Frerichs LM, Frerichs B, Petzsch P, Köhrer K, Windolf J, Bittersohl B, Hoffmann MJ and Grotheer V: Tumorigenic effects of human mesenchymal stromal cells and fibroblasts on bladder cancer cells. Front Oncol. 13:12281852023. View Article : Google Scholar : PubMed/NCBI | |
Millet M, Bollmann E, Ringuette Goulet C, Bernard G, Chabaud S, Huot MÉ, Pouliot F, Bolduc S and Bordeleau F: Cancer-associated fibroblasts in a 3D engineered tissue model induce tumor-like matrix stiffening and EMT transition. Cancers (Basel). 14:38102022. View Article : Google Scholar : PubMed/NCBI | |
Perez VM, Kearney JF and Yeh JJ: The PDAC extracellular matrix: A review of the ECM protein composition, tumor cell interaction, and therapeutic strategies. Front Oncol. 11:7513112021. View Article : Google Scholar : PubMed/NCBI | |
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
Ritterson Lew C, Guin S and Theodorescu D: Targeting glycogen metabolism in bladder cancer. Nat Rev Urol. 12:383–391. 2015. View Article : Google Scholar : PubMed/NCBI | |
Afonso J, Santos LL, Longatto-Filho A and Baltazar F: Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol. 17:77–106. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Gu J, Qian Q, Zhang Y, Huang T, Li X, Liu Z, Shao Q, Liang Y, Qiao L, et al: Lactate supports Treg function and immune balance via MGAT1 effects on N-glycosylation in the mitochondria. The Journal of clinical investigation. J Clin Invest. 134:e1758972024. View Article : Google Scholar : PubMed/NCBI | |
Afonso J, Santos LL, Miranda-Gonçalves V, Morais A, Amaro T, Longatto-Filho A and Baltazar F: CD147 and MCT1-potential partners in bladder cancer aggressiveness and cisplatin resistance. Mol Carcinog. 54:1451–1466. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abd El-Fattah EE and Selim HM: Reprograming immune microenvironment modulates CD47 cancer stem cells in hepatocellular carcinoma. Int Immunopharmacol. 113((Pt B)): 1094752022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Yu Y, Zhang Z, Li D, Liang Z, Wang L, Chen Y, Liang Y and Niu H: Cancer-associated fibroblasts-derived CXCL12 enhances immune escape of bladder cancer through inhibiting P62-mediated autophagic degradation of PDL1. J Exp Clin Cancer Res. 42:3162023. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Han B, Chen Y and Geng F: SAAL1, a novel oncogene, is associated with prognosis and immunotherapy in multiple types of cancer. Aging (Albany NY). 14:6316–6337. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Chen S, Li K, Wang G, Xiong G, Ling R, Zhang C, Zhang Z, Han H, Chen Z, et al: CD276-dependent efferocytosis by tumor-associated macrophages promotes immune evasion in bladder cancer. Nat Commun. 15:28182024. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Shen W, Zhang Y, Liu M, Zhang L, Liu Q, Lu HH and Bo J: Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget. 8:38378–38388. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Wang B, Hou W, Zeng H, He W, Zhang XK, Yan D, Yu H, Huang L, Pei L, et al: NAD(+) metabolism enzyme NNMT in cancer-associated fibroblasts drives tumor progression and resistance to immunotherapy by modulating macrophages in urothelial bladder cancer. J Immunother Cancer. 12:e0092812024. View Article : Google Scholar : PubMed/NCBI | |
Truskowski K, Amend SR and Pienta KJ: Dormant cancer cells: Programmed quiescence, senescence, or both? Cancer Metastasis Rev. 42:37–47. 2023. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Jin K, Zhou X, Zhang Z, Ge L, Xiong X, Su X, Jin D, Yuan Q, Zhang C, et al: Blockade of integrin signaling reduces chemotherapy-induced premature senescence in collagen cultured bladder cancer cells. Precis Clin Med. 5:pbac0072022. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Yang L, Yang X, Liu F, Fu B and Xiong J: Stimulator of interferon genes mediated immune senescence reveals the immune microenvironment and prognostic characteristics of bladder cancer. Heliyon. 10:e288032024. View Article : Google Scholar : PubMed/NCBI | |
Francescangeli F, De Angelis ML, Rossi R, Cuccu A, Giuliani A, De Maria R and Zeuner A: Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev. 42:197–215. 2023.PubMed/NCBI | |
Clinton TN, Chen Z, Wise H, Lenis AT, Chavan S, Donoghue MTA, Almassi N, Chu CE, Dason S, Rao P, et al: Genomic heterogeneity as a barrier to precision oncology in urothelial cancer. Cell Rep. 41:1118592022. View Article : Google Scholar : PubMed/NCBI | |
Lavallee E, Sfakianos JP and Mulholland DJ: Tumor heterogeneity and consequences for bladder cancer treatment. Cancers (Basel). 13:52972021. View Article : Google Scholar : PubMed/NCBI | |
Ma G, Yang X, Liang Y, Wang L, Li D, Chen Y, Liang Z, Wang Y and Niu H: Precision medicine and bladder cancer heterogeneity. Bull Cancer. 105:925–931. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yang W, Xue X, Li Y, Jin Z and Ji Z: Integrated analysis revealed an inflammatory cancer-associated fibroblast-based subtypes with promising implications in predicting the prognosis and immunotherapeutic response of bladder cancer patients. Int J Mol Sci. 23:159702022. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Zu X, Li Y, Han Y, Tan J, Cai C, Shen E, Liu P, Deng G, Feng Z, et al: A cancer-associated fibroblast subtypes-based signature enables the evaluation of immunotherapy response and prognosis in bladder cancer. iScience. 26:1077222023. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Zhang H, Yang C, Yin M, Teng X, Yang M, Kong D, Zhang J, Peng W, Chu Z, et al: Inhibition of JNK signaling overcomes cancer-associated fibroblast-mediated immunosuppression and enhances the efficacy of immunotherapy in bladder cancer. Cancer Res. 84:4199–4213. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shan G, Zhou X, Gu J, Zhou D, Cheng W, Wu H, Wang Y, Tang T and Wang X: Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/beta-catenin pathway and upregulating PTEN. Cell Oncol (Dordr). 44:45–59. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Zeng H, Jin K, Liu Z, Hu B, Liu C, Yan S, Yu Y, You R, Zhang H, et al: Infiltration and polarization of tumor-associated macrophages predict prognosis and therapeutic benefit in muscle-invasive bladder cancer. Cancer Immunol Immunother. 71:1497–1506. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Wang Z, Zeng H, Qi Y, Chen Y, Wang T, Wang J, Chang Y, Bai Q, Xia Y, et al: Blockade of DC-SIGN(+) tumor-associated macrophages reactivates antitumor immunity and improves immunotherapy in muscle-invasive bladder cancer. Cancer Res. 80:1707–1719. 2020. View Article : Google Scholar : PubMed/NCBI | |
An HW, Hou DY, Yang J, Wang ZQ, Wang MD, Zheng R, Zhang NY, Hu XJ, Wang ZJ, Wang L, et al: A bispecific glycopeptide spatiotemporally regulates tumor microenvironment for inhibiting bladder cancer recurrence. Sci Adv. 9:eabq82252023. View Article : Google Scholar : PubMed/NCBI | |
Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI | |
Necchi A, Ramlau R, Falcón González A, Chaudhry A, Todenhöfer T, Tahbaz R, Fontana E, Giannatempo P, Deville JL, Pouessel D, et al: Derazantinib alone and with atezolizumab in metastatic urothelial carcinoma with activating FGFR aberrations. JNCI Cancer Spectr. 8:pkae0302024. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Wang Y, Liu N, Qi R, Xu Y, Li K, Feng Y and Shi B: A FAK inhibitor boosts anti-PD1 immunotherapy in a hepatocellular carcinoma mouse model. Front Pharmacol. 12:8204462022. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Li N, Gao J, Zhao Y, Jiang J, Xie S, Zhang C, Zhang Q, Liu L, Wang Z, et al: Targeting of focal adhesion kinase enhances the immunogenic cell death of PEGylated liposome doxorubicin to optimize therapeutic responses of immune checkpoint blockade. J Exp Clin Cancer Res. 43:512024. View Article : Google Scholar : PubMed/NCBI | |
de Ruiter BM, van Hattum JW, Lipman D, de Reijke TM, van Moorselaar RJA, van Gennep EJ, Maartje Piet AH, Donker M, van der Hulle T, Voortman J, et al: Phase 1 study of chemoradiotherapy combined with nivolumab ± ipilimumab for the curative treatment of muscle-invasive bladder cancer. Eur Urol. 82:518–526. 2022. View Article : Google Scholar : PubMed/NCBI | |
Balar AV, Kamat AM, Kulkarni GS, Uchio EM, Boormans JL, Roumiguié M, Krieger LEM, Singer EA, Bajorin DF, Grivas P, et al: Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): An open-label, single-arm, multicentre, phase 2 study. Lancet Oncol. 22:919–930. 2021. View Article : Google Scholar : PubMed/NCBI | |
Grivas P, Koshkin VS, Chu X, Cole S, Jain RK, Dreicer R, Cetnar JP, Sundi D, Gartrell BA, Galsky MD, et al: PrECOG PrE0807: A phase 1b feasibility trial of neoadjuvant nivolumab without and with lirilumab in patients with muscle-invasive bladder cancer ineligible for or refusing cisplatin-based neoadjuvant chemotherapy. Eur Urol Oncol. 7:914–922. 2024. View Article : Google Scholar : PubMed/NCBI | |
Powles T, Csőszi T, Özgüroğlu M, Matsubara N, Géczi L, Cheng SY, Fradet Y, Oudard S, Vulsteke C, Morales Barrera R, et al: Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. Lancet Oncol. 22:931–945. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qu YY, Sun Z, Han W, Zou Q, Xing N, Luo H, Zhang X, He C, Bian XJ, Cai J, et al: Camrelizumab plus famitinib for advanced or metastatic urothelial carcinoma after platinum-based therapy: Data from a multicohort phase 2 study. J Immunother Cancer. 10:e0044272022. View Article : Google Scholar : PubMed/NCBI | |
Sundahl N, De Wolf K, Rottey S, Decaestecker K, De Maeseneer D, Meireson A, Goetghebeur E, Fonteyne V, Verbeke S, De Visschere P, et al: A phase I/II trial of fixed-dose stereotactic body radiotherapy with sequential or concurrent pembrolizumab in metastatic urothelial carcinoma: evaluation of safety and clinical and immunologic response. J Transl Med. 15:1502017. View Article : Google Scholar : PubMed/NCBI | |
Attalla S, Taifour T and Muller W: Tailoring therapies to counter the divergent immune landscapes of breast cancer. Front Cell Dev Biol. 11:11117962023. View Article : Google Scholar : PubMed/NCBI | |
Hsu MM, Xia Y, Troxel A, Delbeau D, Francese K, Leis D, Shepherd D and Balar AV: Outcomes with first-line PD-1/PD-L1 inhibition in advanced urothelial cancer: A single institution experience. Clin Genitourin Cancer. 18:e209–e216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S and Qiao Y: Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6:1532021. View Article : Google Scholar : PubMed/NCBI | |
Guan Z, Sun Y, Mu L, Jiang Y and Fan J: Tenascin-C promotes bladder cancer progression and its action depends on syndecan-4 and involves NF-κB signaling activation. BMC Cancer. 22:2402022. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI | |
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q and Cui Y: Targeting integrin pathways: Mechanisms and advances in therapy. Signal Transduct Target Ther. 8:12023. View Article : Google Scholar : PubMed/NCBI | |
Bergonzini C, Kroese K, Zweemer AJM and Danen EHJ: Targeting integrins for cancer therapy-disappointments and opportunities. Front Cell Dev Biol. 10:8638502022. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Yan D, Liu Y, Huang P and Cui H: The roles of integrin α5β1 in human cancer. Onco Targets Ther. 13:13329–13344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Felsenstein KM and Theodorescu D: Precision medicine for urothelial bladder cancer: Update on tumour genomics and immunotherapy. Nat Rev Urol. 15:92–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grausenburger R, Herek P, Shariat SF and Englinger B: Recent contributions of single-cell and spatial profiling to the understanding of bladder cancer. Curr Opin Urol. 34:236–243. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Liang Z, Li D, Wang L, Chen Y, Liang Y, Jiao W and Niu H: Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer. Hum Cell. 35:649–664. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, et al: Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat. 68:1009382023. View Article : Google Scholar : PubMed/NCBI | |
Liu YR, Ortiz-Bonilla CJ and Lee YF: Extracellular vesicles in bladder cancer: Biomarkers and beyond. Int J Mol Sci. 19:28222018. View Article : Google Scholar : PubMed/NCBI | |
Meeks JJ, Al-Ahmadie H, Faltas BM, Taylor JA III, Flaig TW, DeGraff DJ, Christensen E, Woolbright BL, McConkey DJ and Dyrskjøt L: Genomic heterogeneity in bladder cancer: Challenges and possible solutions to improve outcomes. Nat Rev Urol. 17:259–270. 2020. View Article : Google Scholar : PubMed/NCBI | |
Benjamin DJ and Lyou Y: Advances in immunotherapy and the TGF-β resistance pathway in metastatic bladder cancer. Cancers (Basel). 13:57242021. View Article : Google Scholar : PubMed/NCBI | |
Massari F, Santoni M, Ciccarese C, Brunelli M, Conti A, Santini D, Montironi R, Cascinu S and Tortora G: Emerging concepts on drug resistance in bladder cancer: Implications for future strategies. Crit Rev Oncol Hematol. 96:81–90. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Xie Q, Deng J and Wei WF: The role of cancer-associated fibroblasts in bladder cancer progression. Heliyon. 9:e198022023. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, et al: Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat. 73:1010592024. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, Zhang X and Dong W: CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett. 554:2160232023. View Article : Google Scholar : PubMed/NCBI | |
Kang HW, Kim WJ, Choi W and Yun SJ: Tumor heterogeneity in muscle-invasive bladder cancer. Transl Androl Urol. 9:2866–2880. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Ji YR and Lee YM: Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharm Res. 45:401–416. 2022. View Article : Google Scholar : PubMed/NCBI |