
Potential role of Fanconi anemia pathway in the pathogenesis of endometrial cancer (Review)
- Authors:
- Mengmeng Yao
- Chuqi Liu
- Huiyu Ping
- Kaidi Meng
- Xinru Li
- Qingxin Li
- Yuanmin Qi
- Ziming Zhu
- Li Zhang
- Aizhong Han
-
Affiliations: Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China, College of Medical Laboratory, Qilu Medical University, Zibo 255300, P.R. China, Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China - Published online on: August 21, 2025 https://doi.org/10.3892/mmr.2025.13660
- Article Number: 295
-
Copyright: © Yao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI | |
Feng J, Lin R, Li H, Wang J and He H: Global and regional trends in the incidence and mortality burden of endometrial cancer, 1990–2019: Updated results from the global burden of disease study, 2019. Chin Med J (Engl). 137:294–302. 2024. View Article : Google Scholar : PubMed/NCBI | |
Abdol Manap N, Ng BK, Phon SE, Abdul Karim AK, Lim PS and Fadhil M: Endometrial cancer in pre-menopausal women and younger: Risk factors and outcome. Int J Environ Res Public Health. 19:90592022. View Article : Google Scholar : PubMed/NCBI | |
Gu B, Shang X, Yan M, Li X, Wang W, Wang Q and Zhang C: Variations in incidence and mortality rates of endometrial cancer at the global, regional, and national levels, 1990–2019. Gynecol Oncol. 161:573–580. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bokhman JV: Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 15:10–17. 1983. View Article : Google Scholar : PubMed/NCBI | |
Bae HS, Kim H, Kwon SY, Kim KR, Song JY and Kim I: Should endometrial clear cell carcinoma be classified as type II endometrial carcinoma? Int J Gynecol Pathol. 34:74–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Suarez AA, Felix AS and Cohn DE: Bokhman Redux: Endometrial cancer ‘types’ in the 21st century. Gynecol Oncol. 144:243–249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E and Vergote I: Endometrial cancer. Lancet. 366:491–505. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mhawech-Fauceglia P, Wang D, Kim G, Sharifian M, Chen X, Liu Q, Lin YG, Liu S and Pejovic T: Expression of DNA repair proteins in endometrial cancer predicts disease outcome. Gynecol Oncol. 132:593–598. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, et al: Integrated genomic characterization of endometrial carcinoma. Nature. 497:67–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matthews HK, Bertoli C and de Bruin RAM: Cell cycle control in cancer. Nat Rev Mol Cell Biol. 23:74–88. 2022. View Article : Google Scholar : PubMed/NCBI | |
Milletti G, Strocchio L, Pagliara D, Girardi K, Carta R, Mastronuzzi A, Locatelli F and Nazio F: Canonical and noncanonical roles of fanconi anemia proteins: Implications in cancer predisposition. Cancers (Basel). 12:26842020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Joseph S, Wu D, Bowser JL and Vaziri C: The DNA Damage Response (DDR) landscape of endometrial cancer defines discrete disease subtypes and reveals therapeutic opportunities. NAR Cancer. 6:zcae0152024. View Article : Google Scholar : PubMed/NCBI | |
Nalepa G and Clapp DW: Fanconi anemia and the cell cycle: New perspectives on aneuploidy. F1000Prime Rep. 6:232014. View Article : Google Scholar : PubMed/NCBI | |
García-de-Teresa B, Rodríguez A and Frias S: Chromosome instability in Fanconi anemia: From breaks to phenotypic consequences. Genes (Basel). 11:15282020. View Article : Google Scholar : PubMed/NCBI | |
Wang W: Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 8:735–748. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Leung JWC, Lowery M, Matsushita N, Wang Y, Shen X, Huong D, Takata M, Chen J and Li L: Modularized functions of the Fanconi anemia core complex. Cell Rep. 7:1849–1857. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, Meetei AR, Laghmani el H, Joenje H, McDonald N, de Winter JP, et al: Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell. 25:331–343. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liang CC, Li Z, Lopez-Martinez D, Nicholson WV, Vénien-Bryan C and Cohn MA: The FANCD2-FANCI complex is recruited to DNA interstrand crosslinks before monoubiquitination of FANCD2. Nat Commun. 7:121242016. View Article : Google Scholar : PubMed/NCBI | |
Kim H and D'Andrea AD: Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26:1393–1408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Salomão VMR, de Almeida AM, Matuo R and Sousa FG: In silico studies of molecular alterations in fanconi anemia genes from cancer cell lines and samples. Obs Econ Latinoam. 21:13067–13087. 2023. | |
Pace P, Johnson M, Tan WM, Mosedale G, Sng C, Hoatlin M, de Winter J, Joenje H, Gergely F and Patel KJ: FANCE: The link between Fanconi anaemia complex assembly and activity. EMBO J. 21:3414–3423. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bouffard F, Plourde K, Bélanger S, Ouellette G, Labrie Y and Durocher F: Analysis of a FANCE splice isoform in regard to DNA repair. J Mol Biol. 427:3056–3073. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Angelis de Carvalho N, Niitsuma BN, Kozak VN, Costa FD, de Macedo MP, Kupper BEC, Silva MLG, Formiga MN, Volc SM, Aguiar Junior S, et al: Clinical and molecular assessment of patients with Lynch syndrome and sarcomas underpinning the association with MSH2 germline pathogenic variants. Cancers (Basel). 12:18482020. View Article : Google Scholar : PubMed/NCBI | |
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H and Fu C: Reduced FANCE confers genomic instability and malignant behavior by regulating cell cycle progression in endometrial cancer. J Cancer. 14:2670–2685. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Yin H, Suye S, He J and Fu C: Pan-cancer analysis of the prognostic and immunological role of Fanconi anemia complementation group E. Front Genet. 13:10249892023. View Article : Google Scholar : PubMed/NCBI | |
Lin B, Li H, Zhang T, Ye X, Yang H and Shen Y: Comprehensive analysis of macrophage-related multigene signature in the tumor microenvironment of head and neck squamous cancer. Aging (Albany NY). 13:5718–5747. 2021. View Article : Google Scholar : PubMed/NCBI | |
Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P and Patel KJ: The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell. 15:607–620. 2004. View Article : Google Scholar : PubMed/NCBI | |
Heald B, Mokhtary S, Nielsen SM, Rojahn S, Yang S, Michalski ST and Esplin ED: Unexpected actionable genetic variants revealed by multigene panel testing of patients with uterine cancer. Gynecol Oncol. 166:344–350. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luebben SW, Kawabata T, Johnson CS, O'sullivan MG and Shima N: A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression. Nucleic Acids Res. 42:5605–5615. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heinrich MC, Silvey KV, Stone S, Zigler AJ, Griffith DJ, Montalto M, Chai L, Zhi Y and Hoatlin ME: Posttranscriptional cell cycle-dependent regulation of human FANCC expression. Blood. 95:3970–3977. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gallmeier E, Calhoun ES, Rago C, Brody JR, Cunningham SC, Hucl T, Gorospe M, Kohli M, Lengauer C and Kern SE: Targeted disruption of FANCC and FANCG in human cancer provides a preclinical model for specific therapeutic options. Gastroenterology. 130:2145–2154. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li X, Plett PA, Yang Y, Hong P, Freie B, Srour EF, Orschell CM, Clapp DW and Haneline LS: Fanconi anemia type C-deficient hematopoietic stem/progenitor cells exhibit aberrant cell cycle control. Blood. 102:2081–2084. 2003. View Article : Google Scholar : PubMed/NCBI | |
Singh DK, Gamboa RS, Singh AK, Walkemeier B, Van Leene J, De Jaeger G, Siddiqi I, Guerois R, Crismani W and Mercier R: The FANCC-FANCE-FANCF complex is evolutionarily conserved and regulates meiotic recombination. Nucleic Acids Res. 51:2516–2528. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ahsan MD, Webster EM, Qazi M, Weiss J, Levi S, Cantillo E, Chapman-Davis E, Holcomb K, Sharaf R and Frey MK: #1090 The mutational landscape of uterine sarcoma: Is there rationale for targeted therapies? Int J Gynecol Cancer. 33 (Suppl 3):A202.2–A202. 2023. | |
Nasioudis D, Latif NA, Ko EM, Cory L, Kim SH, Martin L, Simpkins F and Giuntoli R II: Next generation sequencing reveals a high prevalence of pathogenic mutations in homologous recombination DNA damage repair genes among patients with uterine sarcoma. Gynecol Oncol. 177:14–19. 2023. View Article : Google Scholar : PubMed/NCBI | |
Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A, Ananth S, Glazer PM, Semmes OJ, Bale AE, Jones NJ and Kupfer GM: Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet. 20:4395–4410. 2011. View Article : Google Scholar : PubMed/NCBI | |
Drusbosky L, Haynes G, Grant B, Sobernis P and Lheureux S: Abstract A012: Genomic landscape of somatic alterations identified in endometrial cancer using liquid biopsy. Clin Cancer Res. 30 (5 Suppl):A0122024. View Article : Google Scholar | |
Kral J, Jelinkova S, Zemankova P, Vocka M, Borecka M, Cerna L, Cerna M, Dostalek L, Duskova P, Foretova L, et al: Germline multigene panel testing of patients with endometrial cancer. Oncol Lett. 25:2162023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gusev A and Kraft P: Germline cancer gene expression quantitative trait loci influence local and global tumor mutations. medRxiv. 2022.2008.2023.22279002. 2022. | |
Wepy C, Nucci MR and Parra-Herran C: Atypical endometriosis: Comprehensive characterization of clinicopathologic, immunohistochemical, and molecular features. Int J Gynecol Pathol. 43:70–77. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Martinez D, Kupculak M, Yang D, Yoshikawa Y, Liang CC, Wu R, Gygi SP and Cohn MA: Phosphorylation of FANCD2 inhibits the FANCD2/FANCI complex and suppresses the Fanconi anemia pathway in the absence of DNA damage. Cell Rep. 27:2990–3005.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H, Zhou Z and Fu C: FANCD2 promotes the malignant behavior of endometrial cancer cells and its prognostic value. Exp Cell Res. 421:1133882022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Wang R, Wang R, Song J, Ma F, Pan H, Gao C, Wang D, Chen X and Fan X: Pancancer analysis of the prognostic and immunological role of FANCD2: A potential target for carcinogenesis and survival. BMC Med Genomics. 17:692024. View Article : Google Scholar : PubMed/NCBI | |
Lin HH, Zeng WH, Yang HK, Huang LS, Pan R and Lei NX: Fanconi anemia complementation group D2 promotes sensitivity of endometrial cancer cells to chemotherapeutic agents by inhibiting the ferroptosis pathway. BMC Womens Health. 24:412024. View Article : Google Scholar : PubMed/NCBI | |
Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A, Uchida E, Saberi A, Kinoshita E, Kinoshita-Kikuta E, Koike T, et al: FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol. 15:1138–1146. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaljunen H, Taavitsainen S, Kaarijärvi R, Takala E, Paakinaho V, Nykter M, Bova GS and Ketola K: Fanconi anemia pathway regulation by FANCI in prostate cancer. Front Oncol. 13:12608262023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li Q, Li J, Cui Y and Lu Z: Expression and clinical significance of FANCI gene in pan-cancer: A comprehensive analysis based on multi-omics data. Front Genet. 16:15428882025. View Article : Google Scholar : PubMed/NCBI | |
Fierheller CT, Alenezi WM, Serruya C, Revil T, Amuzu S, Bedard K, Subramanian DN, Fewings E, Bruce JP, Prokopec S, et al: Molecular genetic characteristics of FANCI, a proposed new ovarian cancer predisposing gene. Genes (Basel). 14:2772023. View Article : Google Scholar : PubMed/NCBI | |
Wen H, Xu Q, Sheng X, Li H, Wang X and Wu X: Prevalence and landscape of pathogenic or likely pathogenic germline variants and their association with somatic phenotype in unselected Chinese patients with gynecologic cancers. JAMA Netw Open. 6:e23264372023. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Wang T, Li N, Yao H, Ying J, Wu L and Yuan G: Prevalence and prognostic relevance of homologous recombination repair gene mutations in uterine serous carcinoma. Cells. 11:35632022. View Article : Google Scholar : PubMed/NCBI | |
Bi J, Areecheewakul S, Li Y, Yang S, Zhang Y, Ebeid K, Li L, Thiel KW, Zhang J, Dai D, et al: MTDH/AEG-1 downregulation using pristimerin-loaded nanoparticles inhibits Fanconi anemia proteins and increases sensitivity to platinum-based chemotherapy. Gynecol Oncol. 155:349–358. 2019. View Article : Google Scholar : PubMed/NCBI | |
Becker AE, Hernandez YG, Frucht H and Lucas AL: Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J Gastroenterol. 20:11182–11198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Buisson R and Masson JY: PALB2 self-interaction controls homologous recombination. Nucleic Acids Res. 40:10312–10323. 2012. View Article : Google Scholar : PubMed/NCBI | |
Foo TK and Xia B: BRCA1-dependent and independent recruitment of PALB2-BRCA2-RAD51 in the DNA damage response and cancer. Cancer Res. 82:3191–3197. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, Paczkowska M, Reynolds S, Wyczalkowski MA, Oak N, et al: Pathogenic germline variants in 10,389 adult cancers. Cell. 173:355–370.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teo ZL, Park DJ, Provenzano E, Chatfield CA, Odefrey FA, Nguyen-Dumont T kConFab, Dowty JG, Hopper JL, Winship I, et al: Prevalence of PALB2 mutations in Australasian multiple-case breast cancer families. Breast Cancer Res. 15:R172013. View Article : Google Scholar : PubMed/NCBI | |
Susswein LR, Marshall ML, Nusbaum R, Vogel Postula KJ, Weissman SM, Yackowski L, Vaccari EM, Bissonnette J, Booker JK, Cremona ML, et al: Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med. 18:823–832. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fulk K, Milam MR, Li S, Yussuf A, Black MH, Chao EC, LaDuca H and Stany MP: Women with breast and uterine cancer are more likely to harbor germline mutations than women with breast or uterine cancer alone: A case for expanded gene testing. Gynecol Oncol. 152:612–617. 2019. View Article : Google Scholar : PubMed/NCBI | |
Heeke AL, Pishvaian MJ, Lynce F, Xiu J, Brody JR, Chen WJ, Baker TM, Marshall JL and Isaacs C: Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol. 2018.PO.17.00286. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chan GHJ, Ong PY, Low JJH, Kong HL, Ow SGW, Tan DSP, Lim YW, Lim SE and Lee SC: Clinical genetic testing outcome with multi-gene panel in Asian patients with multiple primary cancers. Oncotarget. 9:306492018. View Article : Google Scholar : PubMed/NCBI | |
Johnatty SE, Pesaran T, Dolinsky J, Yussuf A, LaDuca H, James PA, O'Mara TA and Spurdle AB: Case-case analysis addressing ascertainment bias for multigene panel testing implicates BRCA1 and PALB2 in endometrial cancer. Hum Mutat. 42:1265–1278. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tian W, Bi R, Ren Y, He H, Shi S, Shan B, Yang W, Wang Q and Wang H: Screening for hereditary cancers in patients with endometrial cancer reveals a high frequency of germline mutations in cancer predisposition genes. Int J Cancer. 145:1290–1298. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kondrashova O, Shamsani J, O'Mara TA, Newell F, McCart Reed AE, Lakhani SR, Kirk J, Pearson JV, Waddell N and Spurdle AB: Tumor signature analysis implicates hereditary cancer genes in endometrial cancer development. Cancers (Basel). 13:17622021. View Article : Google Scholar : PubMed/NCBI | |
Cilento MA, Poplawski NK, Paramasivam S, Thomas DM and Kichenadasse G: Germline PALB2 variants and PARP inhibitors in endometrial cancer. J Natl Compr Canc Netw. 19:1212–1217. 2021. View Article : Google Scholar : PubMed/NCBI | |
Foo TK, Tischkowitz M, Simhadri S, Boshari T, Zayed N, Burke KA, Berman SH, Blecua P, Riaz N, Huo Y, et al: Compromised BRCA1-PALB2 interaction is associated with breast cancer risk. Oncogene. 36:4161–4170. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bowman-Colin C, Xia B, Bunting S, Klijn C, Drost R, Bouwman P, Fineman L, Chen X, Culhane AC, Cai H, et al: Palb2 synergizes with Trp53 to suppress mammary tumor formation in a model of inherited breast cancer. Proc Natl Acad Sci USA. 110:8632–8637. 2013. View Article : Google Scholar : PubMed/NCBI | |
Somyajit K, Subramanya S and Nagaraju G: Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: Implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem. 287:3366–3380. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kolinjivadi AM, Chong ST, Choudhary R, Sankar H, Chew EL, Yeo C, Chan SH and Ngeow J: Functional analysis of germline RAD51C missense variants highlight the role of RAD51C in replication fork protection. Hum Mol Genet. 32:1401–1409. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chun J, Buechelmaier ES and Powell SN: Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol. 33:387–395. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ring KL, Bruegl AS, Allen BA, Elkin EP, Singh N, Hartman AR, Daniels MS and Broaddus RR: Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Mod Pathol. 29:1381–1389. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hirshfield KM, Rebbeck TR and Levine AJ: Germline mutations and polymorphisms in the origins of cancers in women. J Oncol. 2010:2976712010. View Article : Google Scholar : PubMed/NCBI | |
Nath S and Nagaraju G: FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks. PLoS Genet. 16:e10087012020. View Article : Google Scholar : PubMed/NCBI | |
Alayev A, Salamon RS, Manna S, Schwartz NS, Berman AY and Holz MK: Estrogen induces RAD51C expression and localization to sites of DNA damage. Cell Cycle. 15:3230–3239. 2016. View Article : Google Scholar : PubMed/NCBI | |
Muhseena NK, Mathukkada S, Das SP and Laha S: The repair gene BACH1-a potential oncogene. Oncol Rev. 15:5192021. View Article : Google Scholar : PubMed/NCBI | |
Long B, Lilyquist J, Weaver A, Hu C, Gnanaolivu R, Lee KY, Hart SN, Polley EC, Bakkum-Gamez JN, Couch FJ and Dowdy SC: Cancer susceptibility gene mutations in type I and II endometrial cancer. Gynecol Oncol. 152:20–25. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Jonge MM, Auguste A, van Wijk LM, Schouten PC, Meijers M, Ter Haar NT, Smit VTHBM, Nout RA, Glaire MA, Church DN, et al: Frequent homologous recombination deficiency in high-grade endometrial carcinomas. Clin Cancer Res. 25:1087–1097. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Aimono E, Tanishima S, Imai M, Nagatsuma AK, Hayashi H, Yoshimura Y, Nakayama K, Kyo S and Nishihara H: Olaparib monotherapy for BRIP1-mutated high-grade serous endometrial cancer. JCO Precis Oncol. 4:PO.19.00368. 2020. | |
Matsuzaki K, Borel V, Adelman CA, Schindler D and Boulton SJ: FANCJ suppresses microsatellite instability and lymphomagenesis independent of the Fanconi anemia pathway. Genes Dev. 29:2532–2546. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Lu LY: BRCA1 and homologous recombination: Implications from mouse embryonic development. Cell Biosci. 10:492020. View Article : Google Scholar : PubMed/NCBI | |
Kolinjivadi AM, Sannino V, de Antoni A, Técher H, Baldi G and Costanzo V: Moonlighting at replication forks-a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. 591:1083–1100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng CX: BRCA1: Cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 34:1416–1426. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee H: Cycling with BRCA2 from DNA repair to mitosis. Exp Cell Res. 329:78–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Jonge MM, de Kroon CD, Jenner DJ, Oosting J, de Hullu JA, Mourits MJE, Gómez Garcia EB, Ausems MGEM, Margriet Collée J, van Engelen K, et al: Endometrial cancer risk in women with germline BRCA1 or BRCA2 mutations: Multicenter cohort study. J Natl Cancer Inst. 113:1203–1211. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jamieson A, Sobral de Barros J, Cochrane DR, Douglas JM, Shankar S, Lynch BJ, Leung S, Martin S, Senz J, Lum A, et al: Targeted and shallow whole-genome sequencing identifies therapeutic opportunities in p53abn endometrial cancers. Clin Cancer Res. 30:2461–2474. 2024. View Article : Google Scholar : PubMed/NCBI | |
Smith ES, Da Cruz Paula A, Cadoo KA, Abu-Rustum NR, Pei X, Brown DN, Ferrando L, Sebastiao APM, Riaz N, Robson ME, et al: Endometrial cancers in BRCA1 or BRCA2 germline mutation carriers: Assessment of homologous recombination DNA repair defects. JCO Precis Oncol. 3:PO.19.00103. 2019. | |
Ito M, Fujita Y and Shinohara A: Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst). 134:1036132024. View Article : Google Scholar : PubMed/NCBI | |
Auguste A, Genestie C, De Bruyn M, Adam J, Le Formal A, Drusch F, Pautier P, Crosbie EJ, MacKay H, Kitchener HC, et al: Refinement of high-risk endometrial cancer classification using DNA damage response biomarkers: A TransPORTEC initiative. Mod Pathol. 31:1851–1861. 2018. View Article : Google Scholar : PubMed/NCBI | |
Smolarz B and Romanowicz H: Association between single nucleotide polymorphism of DNA repair genes and endometrial cancer: A case-control study. Int J Clin Exp Pathol. 11:1732–1738. 2018.PubMed/NCBI | |
Romanowicz-Makowska H, Smolarz B, Połać I and Sporny S: Single nucleotide polymorphisms of RAD51 G135C, XRCC2 Arg188His and XRCC3 Thr241Met homologous recombination repair genes and the risk of sporadic endometrial cancer in Polish women. J Obstet Gynaecol Res. 38:918–924. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Zhang Y, Yang L, Xu H, Zhang T, An R and Zhu K: Association between RAD51 135 G/C polymorphism and risk of 3 common gynecological cancers: A meta-analysis. Medicine (Baltimore). 97:e112512018. View Article : Google Scholar : PubMed/NCBI | |
Michalska MM, Samulak D, Romanowicz H and Smolarz B: Association of polymorphisms in the 5′ untranslated region of RAD51 gene with risk of endometrial cancer in the Polish population. Arch Gynecol Obstet. 290:985–991. 2014. View Article : Google Scholar : PubMed/NCBI | |
Krupa R, Sobczuk A, Popławski T, Wozniak K and Blasiak J: DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism. Mol Biol Rep. 38:1163–1170. 2011. View Article : Google Scholar : PubMed/NCBI | |
Park JY, Virts EL, Jankowska A, Wiek C, Othman M, Chakraborty SC, Vance GH, Alkuraya FS, Hanenberg H and Andreassen PR: Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet. 53:672–680. 2016. View Article : Google Scholar : PubMed/NCBI | |
Johnson RD, Liu N and Jasin M: Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature. 401:397–399. 1999. View Article : Google Scholar : PubMed/NCBI | |
Griffin CS, Simpson PJ, Wilson CR and Thacker J: Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol. 2:757–761. 2000. View Article : Google Scholar : PubMed/NCBI | |
Webster ALH, Sanders MA, Patel K, Dietrich R, Noonan RJ, Lach FP, White RR, Goldfarb A, Hadi K, Edwards ME, et al: Fanconi anemia pathway deficiency drives copy number variation in squamous cell carcinomas. bioRXiv. 2021.2008. 2014.456365. 2021.PubMed/NCBI | |
Nero C, Pasciuto T, Cappuccio S, Corrado G, Pelligra S, Zannoni GF, Santoro A, Piermattei A, Minucci A, Lorusso D, et al: Further refining 2020 ESGO/ESTRO/ESP molecular risk classes in patients with early-stage endometrial cancer: A propensity score-matched analysis. Cancer. 128:2898–2907. 2022. View Article : Google Scholar : PubMed/NCBI | |
Taylor NP, Gibb RK, Powell MA, Mutch DG, Huettner PC and Goodfellow PJ: Defective DNA mismatch repair and XRCC2 mutation in uterine carcinosarcomas. Gynecol Oncol. 100:107–110. 2006. View Article : Google Scholar : PubMed/NCBI | |
Michalska MM, Samulak D, Bieńkiewicz J, Romanowicz H and Smolarz B: Association between-41657C/T single nucleotide polymorphism of DNA repair gene XRCC2 and endometrial cancer risk in Polish women. Pol J Pathol. 66:67–71. 2015. View Article : Google Scholar : PubMed/NCBI | |
Romanowicz H, Brys M, Forma E and Smolarz B: Lack of association between the 4234G/C X-ray repair cross-complementing 2 (XRCC2) gene polymorphism and the risk of endometrial cancer among Polish population. J Gynecol Res Obstet. 2:47–50. 2016. View Article : Google Scholar | |
Inano S, Sato K, Katsuki Y, Kobayashi W, Tanaka H, Nakajima K, Nakada S, Miyoshi H, Knies K, Takaori-Kondo A, et al: RFWD3-mediated ubiquitination promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Mol Cell. 66:622–634.e8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Yucer N, Liu S, Li M, Yi P, Mu JJ, Yang T, Chu J, Jung SY, O'Malley BW, et al: RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Natl Acad Sci USA. 107:4579–4584. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y: Role of WD domain-containing proteins in cell cycle progression (unpublished thesis). University of Illinois at Urbana-Champaign; 2017 |