1
|
Singh B, Kaur J and Singh K: Microbial
degradation of an organophosphate pesticide, malathion. Crit Rev
Microbiol. 40:146–154. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zidan Nel-H: Hepato-and nephrotoxicity in
male albino rats exposed to malathion and spinosad in stored wheat
grains. Acta Biol Hung. 66:133–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Badr AM: Organophosphate toxicity: Updates
of malathion potential toxic effects in mammals and potential
treatments. Environ Sci Pollut Res Int. 27:26036–26057. 2020.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Fortunato JJ, Feier G, Vitali AM,
Petronilho FC, Dal-Pizzol F and Quevedo J: Malathion-induced
oxidative stress in rat brain regions. Neurochem Res. 31:671–678.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Varol S, Başarslan S, Fırat U, Alp H, Uzar
E, Arıkanoğlu A, Evliyaoğlu O, Acar A, Yücel Y, Kıbrıslı E and
Gökalp O: Detection of borderline dosage of malathion intoxication
in a rat's brain. Eur Rev Med Pharmacol Sci. 19:2318–2323.
2015.PubMed/NCBI
|
6
|
del-Rahman A, Dechkovskaia AM, Goldstein
LB, Bullman SH, Khan W, El-Masry EM and Abou-Donia MB: Neurological
deficits induced by malathion, DEET, and permethrin, alone or in
combination in adult rats. J Toxicol Environ Health A. 67:331–356.
2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dos Santos AA, Naime AA, de Oliveira J,
Colle D, dos Santos DB, Hort MA, Moreira EL, Suñol C, de Bem AF and
Farina M: Long-term and Low-dose malathion exposure causes
cognitive impairment in adult mice: Evidence of hippocampal
mitochondrial dysfunction, astrogliosis and apoptotic events. Arch
Toxicol. 90:647–660. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Navarrete-Meneses M, Salas-Labadía C,
Sanabrais-Jiménez M, Santana-Hernández J, Serrano-Cuevas A,
Juárez-Velázquez R, Olaya-Vargas A and Pérez-Vera P: Exposure to
the insecticides permethrin and malathion induces leukemia and
lymphoma-associated gene aberrations in vitro. Toxicol In Vitro.
44:17–26. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Waheed S, Halsall C, Sweetman AJ, Jones KC
and Malik RN: Pesticides contaminated dust exposure, risk diagnosis
and exposure markers in occupational and residential settings of
Lahore, Pakistan. Environ Toxicol Pharmacol. 56:375–382. 2017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Selmi S, El-Fazaa S and Gharbi N:
Oxidative stress and cholinesterase inhibition in plasma,
erythrocyte and brain of rats' pups following lactational exposure
to malathion. Environ Toxicol Pharmacol. 34:753–760. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Yan J, Xiang B, Wang D, Tang S, Teng M,
Yan S, Zhou Z and Zhu W: Different toxic effects of racemate,
enantiomers, and metabolite of malathion on HepG2 cells using
high-performance liquid
chromatography-quadrupole-time-of-flight-based metabolomics. J
Agric Food Chem. 67:1784–1794. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shieh P, Jan CR and Liang WZ: The
protective effects of the antioxidant N-acetylcysteine (NAC)
against oxidative stress-associated apoptosis evoked by the
organophosphorus insecticide malathion in normal human astrocytes.
Toxicology. 417:1–14. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Abdel-Salam OM, Youness ER, Mohammed NA,
Yassen NN, Khadrawy YA, El-Toukhy SE and Sleem AA: Nitric oxide
synthase inhibitors protect against brain and liver damage caused
by acute malathion intoxication. Asian Pac J Trop Med. 10:773–786.
2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Akbel E, Arslan-Acaroz D, Demirel HH,
Kucukkurt I and Ince S: The subchronic exposure to malathion, an
organophosphate pesticide, causes lipid peroxidation, oxidative
stress, and tissue damage in rats: The protective role of
resveratrol. Toxicol Res (Camb). 7:503–512. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
World Health Organization, . International
Classification of Functioning, Disability, and Health: Children
& Youth Version. ICF-CY. World Health Organization; 2007
|
16
|
Kiely T, Donaldson D and Grube A:
Pesticides industry sales and usage: 2000 and 2001 market
estimates. US Environmental Protection Agency; Washington, DC: pp.
1142004, PubMed/NCBI
|
17
|
Kiely T, Donaldson D and Grube A:
Pesticides Industry Sales and Usage: 2000 and 2001 Market
Estimates, US Environmental Protection Agency, Washington DC
20460/USA. There is no corresponding record for this reference.
2004.
|
18
|
Sulaimon LA, Afolabi LO, Adisa RA,
Ayankojo G, Afolabi MO, Adewolu AM and Wan X: Pharmacological
significance of MitoQ in ameliorating mitochondria-related
diseases. Advances Redox Res. 5:1000372022. View Article : Google Scholar
|
19
|
Zielonka J, Joseph J, Sikora A, Hardy M,
Ouari O, Vasquez-Vivar J, Cheng G, Lopez M and Kalyanaraman B:
Mitochondria-targeted triphenylphosphonium-based compounds:
Syntheses, mechanisms of action, and therapeutic and diagnostic
applications. Chem Rev. 117:10043–10120. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rondeau JD, Lipari S, Mathieu B, Beckers
C, Van de Velde JA, Mignion L, Da Silva Morais M, Kreuzer M,
Colauzzi I, Capeloa T, et al: Mitochondria-targeted antioxidant
MitoQ radiosensitizes tumors by decreasing mitochondrial oxygen
consumption. Cell Death Discov. 10:5142024. View Article : Google Scholar : PubMed/NCBI
|
21
|
Uzun FG, Kalender S, Durak D, Demir F and
Kalender Y: Malathion-induced testicular toxicity in male rats and
the protective effect of vitamins C and E. Food Chem Toxicol.
47:1903–1908. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ibrahim AA, Karam HM, Shaaban EA, Safar MM
and El-Yamany MF: MitoQ ameliorates testicular damage induced by
gamma irradiation in rats: Modulation of mitochondrial apoptosis
and steroidogenesis. Life Sci. 232:1166552019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Reitman S and Frankel S: A colorimetric
method for the determination of serum glutamic oxalacetic and
glutamic pyruvic transaminases. Am J Clin Pathol. 28:56–63. 1957.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Tietz N, Burtis C, Duncan P, Ervin K,
Petitclerc CJ, Rinker AD, Shuey D and Zygowicz ER: A reference
method for measurement of alkaline phosphatase activity in human
serum. Clin Chem. 29:751–761. 1983. View Article : Google Scholar : PubMed/NCBI
|
25
|
Doumas BT, Bayse DD, Carter RJ, Peters T
Jr and Schaffer R: A candidate reference method for determination
of total protein in serum. I. Development and validation. Clin
Chem. 27:1642–1650. 1981. View Article : Google Scholar : PubMed/NCBI
|
26
|
Coulombe JJ and Favreau L: A new simple
semimicro method for colorimetric determination of urea. Clin Chem.
9:102–108. 1963. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bartels H: Serum creatinine without
interference. Clin Chem Acta. 37:193–197. 1972. View Article : Google Scholar
|
28
|
Caraway WT and Hald PM: Uric acid.
Standard methods of clinical chemistry Elsevier. 239–247. 1963.
View Article : Google Scholar
|
29
|
Gornall AG, Bardawill CJ and David MM:
Determination of serum proteins by means of the biuret reaction. J
Biol Chem. 177:751–66. 1949. View Article : Google Scholar : PubMed/NCBI
|
30
|
Doumas BT, Biggs HG, Arends RL and Pinto
PV: Determination of serum albumin. Standard methods of clinical
chemistry Elsevier. 175–188. 1972. View Article : Google Scholar
|
31
|
Rashid K and Sil PC: Curcumin ameliorates
testicular damage in diabetic rats by suppressing cellular
stress-mediated mitochondria and endoplasmic reticulum-dependent
apoptotic death. Biochim Biophys Acta. 1852:70–82. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nishikimi M, Rao NA and Yagi K: The
occurrence of superoxide anion in the reaction of reduced phenazine
methosulfate and molecular oxygen. Biochem Biophys Res Commun.
46:849–854. 1972. View Article : Google Scholar : PubMed/NCBI
|
33
|
Beutler E, Duron O and Kelly BM: Improved
method for determination of blood glutathione. J Lab Clin Med.
61:882–888. 1963.PubMed/NCBI
|
34
|
Paglia DE and Valentine WN: Studies on the
quantitative and qualitative characterization of erythrocyte
glutathione peroxidase. J Lab Clin Med. 70:158–169. 1967.PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Bancroft JD and Gamble M: Theory and
practice of histological techniques. Elsevier health sciences;
2008
|
37
|
Bancroft JD and Layton C: The hematoxylins
and eosin. Bancroft's theory and practice of histological
techniques. 173–186. 2012.
|
38
|
El Okle OS, Tohamy HG, Althobaiti SA,
Soliman MM, Ghamry HI, Farrag F and Shukry M: Ornipural®
mitigates malathion-induced hepato-renal damage in rats via
amelioration of oxidative stress biomarkers, restoration of
antioxidant activity, and attenuation of inflammatory response.
Antioxidants (Basel). 11:7572022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ibrahim A: Biochemical and
histopathological response of oreochromis niloticus to malathion
hepatotoxicity. J Royal Sci. 1:10–15. 2019.
|
40
|
Gur C and Kandemir FM: Molecular and
biochemical investigation of the protective effects of rutin
against liver and kidney toxicity caused by malathion
administration in a rat model. Environ Toxicol. 38:555–565. 2023.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Ye W, Wen C, Zeng A and Hu X: Increased
levels of circulating oxidized mitochondrial DNA contribute to
chronic inflammation in metabolic syndrome, and MitoQ-based
antioxidant therapy alleviates this DNA-induced inflammation. Mol
Cell Endocrinol. 560:1118122023. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cengiz M, Ali JH, Kutlu HM, Vejselova D
and Ayhanci A: Potential recruiting and hepatoprotective effects of
ellagic acid in D-galactosamine-induced liver damage in rats.
Pakistan J Zool. 49:1251–1259. 2017. View Article : Google Scholar
|
43
|
Wani WY, Gudup S, Sunkaria A, Bal A, Singh
PP, Kandimalla RJ, Sharma DR and Gill KD: Protective efficacy of
mitochondrial targeted antioxidant MitoQ against dichlorvos induced
oxidative stress and cell death in rat brain. Neuropharmacology.
61:1193–1201. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Karami-Mohajeri S, Hadian M, Fouladdel S,
Azizi E, Ghahramani MH, Hosseini R and Abdollahi M: Mechanisms of
muscular electrophysiological and mitochondrial dysfunction
following exposure to malathion, an organophosphorus pesticide. Hum
Exp Toxicol. 33:251–263. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ibrahim AA, Mageed SSA, Safar MM,
El-Yamany MF and Oraby MA: MitoQ alleviates hippocampal damage
after cerebral ischemia: The potential role of SIRT6 in regulating
mitochondrial dysfunction and neuroinflammation. Life Sci.
328:1218952023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tait SW and Green DR: Mitochondrial
regulation of cell death. Cold Spring Harb. Perspect Biol.
5:a0087062013.
|
47
|
Teksoy O, Sahinturk V, Cengiz M, İnal B
and Ayhancı A: The possible effects of silymarin on cerebrum with
experimental hepatic encephalopathy in rats. Int J Res. 8:140–146.
2020.
|
48
|
Omar NN, Mosbah RA, Sarawi WS, Rashed MM
and Badr AM: Rifaximin protects against malathion-induced rat
testicular toxicity: A possible clue on modulating gut microbiome
and inhibition of oxidative stress by Mitophagy. Molecules.
27:40692022. View Article : Google Scholar : PubMed/NCBI
|
49
|
Handschin C: The biology of PGC-1α and its
therapeutic potential. Trends Pharmacol Sci. 30:322–329. 2009.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Sule RO, Condon L and Gomes AV: A common
feature of pesticides: Oxidative stress-the role of oxidative
stress in pesticide-induced toxicity. Oxid Med Cell Longev.
2022:55637592022. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ghamry HI, Aboushouk AA, Soliman MM,
Albogami SM, Tohamy HG, Okle OSE, Althobaiti SA, Rezk S, Farrag F,
Helal AI, et al: Ginseng® alleviates malathion-induced
hepatorenal injury through modulation of the biochemical,
antioxidant, anti-apoptotic, and anti-inflammatory markers in male
rats. Life. 12:7712022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Weng AB, Deng MM, Liu XD, Wang HB and Lin
Q: MitoQ Alleviated PM2.5 induced pulmonary epithelial cells injury
by inhibiting Mitochondrial-mediated apoptosis. Iran J Public
Health. 53:614–624. 2024.PubMed/NCBI
|
53
|
Qian S, Wei Z, Yang W, Huang J, Yang Y and
Wang J: The role of BCL-2 family proteins in regulating apoptosis
and cancer therapy. Front Oncol. 12:9853632022. View Article : Google Scholar : PubMed/NCBI
|
54
|
Adisa RA, Sulaimon LA, Okeke EG, Ariyo OC
and Abdulkareem FB: Mitoquinol mesylate (MITOQ) attenuates diethyl
nitrosamine-induced hepatocellular carcinoma through modulation of
mitochondrial antioxidant defense systems. Toxicol Res. 38:275–291.
2021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Mankan AK, Lawless MW, Gray SG, Kelleher D
and McManus R: NF-kappaB regulation: The nuclear response. J Cell
Mol Med. 13:631–643. 2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Oraby MA, Elazazy O, Karam HM, Fadaly DS
and Ibrahim AA: MitoQ combats tumor cell progression in Ehrlich
ascites carcinoma mice: A crosstalk between mitochondrial oxidative
status, mitophagy, and NF-κB signaling. Life Sci. 331:1220632023.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Abd-Elhakim YM, Behairy A, Hashem MM,
Abo-El-Sooud K, El-Metwally AE, Hassan BA and Ali HA: Toll-like
receptors and nuclear factor kappa B signaling pathway involvement
in hepatorenal oxidative damage induced by some food preservatives
in rats. Sci Rep. 13:59382023. View Article : Google Scholar : PubMed/NCBI
|
58
|
Li D and Wu M: Pattern recognition
receptors in health and diseases. Signal Transduct Target Ther.
6:2912021. View Article : Google Scholar : PubMed/NCBI
|
59
|
Lopes-Ferreira M, Farinha LRL, Costa YSO,
Pinto FJ, Disner GR, da Rosa JGDS and Lima C: Pesticide-induced
inflammation at a glance. Toxics. 11:8962023. View Article : Google Scholar : PubMed/NCBI
|
60
|
Dawoud M, Attallah KM, Ibrahim IT, Karam
HM and Ibrahim AA: MitoQ and its hyaluronic acid-based
nanopreparation mitigating gamma radiation-induced intestinal
injury in mice: Alleviation of oxidative stress and apoptosis.
Naunyn Schmiedebergs Arch Pharmacol. 397:5193–5205. 2024.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Cengiz M, Gür B, Sezer CV, Cengiz BP, Gür
F, Bayrakdar A and Ayhancı A: Alternations in interleukin-1β and
nuclear factor kappa beta activity (NF-kB) in rat liver due to the
co-exposure of Cadmium and Arsenic: Protective role of curcumin.
Environ Toxicol Pharmacol. 102:1042182023. View Article : Google Scholar : PubMed/NCBI
|
62
|
Lingappan K: NF-κB in oxidative stress.
Curr Opin Toxicol. 7:81–86. 2018. View Article : Google Scholar : PubMed/NCBI
|
63
|
Haddad JJ: Antioxidant and prooxidant
mechanisms in the regulation of redox(y)-sensitive transcription
factors. Cell Signal. 14:879–897. 2002. View Article : Google Scholar : PubMed/NCBI
|
64
|
Elmorsy EM, Al Doghaither HA, Al-Ghafari
AB, Fawzy MS, Toraih EA and Abd El-Fadeal NM: Hyperoside flavonoids
protect against malathion-induced mitochondrial toxicity in the
differentiated SH-SY5Y cells. Naunyn Schmiedebergs Arch Pharmacol.
Jun 25–2025.doi: 10.1007/s00210-025-04379-2 (Epub ahead of print).
View Article : Google Scholar
|
65
|
Morgan MJ and Liu ZG: Crosstalk of
reactive oxygen species and NF-κB signaling. Cell Res. 21:103–115.
2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Fields M, Marcuzzi A, Gonelli A, Celeghini
C, Maximova N and Rimondi E: Mitochondria-targeted antioxidants, an
innovative class of antioxidant compounds for neurodegenerative
diseases: Perspectives and limitations. Int J Mol Sci. 24:37392023.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Akira S and Takeda K: Toll-like receptor
signalling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
68
|
Gao P, Li L, Han L, Zhang Y, Quan Z, Ding
B, Sun Y, Han B and Ding J: Effects of temperature stress on
genome-wide DNA methylation levels in the sea cucumber,
Apostichopus japonicus. Iranian J Fisheries Sci. 23:437–456.
2024.
|
69
|
Apostolova N and Victor VM: Molecular
strategies for targeting antioxidants to mitochondria: Therapeutic
implications. Antioxid Redox Signal. 22:686–729. 2015. View Article : Google Scholar : PubMed/NCBI
|