
CircRNA in non‑small cell lung cancer: Potential biomarkers and therapeutic targets (Review)
- Authors:
- Zuokun Wu
- Zhengfeng Zhu
- Pengfei Zhao
- Yongxiang Song
- Xixian Ke
-
Affiliations: Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: August 25, 2025 https://doi.org/10.3892/mmr.2025.13662
- Article Number: 297
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025.PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
Cheng C, Wang P, Yang Y, Du X, Xia H, Liu J, Lu L, Wu H and Liu Q: Smoking-induced M2-TAMs, via circEML4 in EVs, promote the progression of NSCLC through ALKBH5-regulated m6A modification of SOCS2 in NSCLC cells. Adv Sci (Weinh). 10:e23009532023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu T, Wang X, Jia Y and Cui H: Autophagy and glycometabolic reprograming in the malignant progression of lung cancer: A review. Technol Cancer Res Treat. 22:153303382311905452023. View Article : Google Scholar : PubMed/NCBI | |
Boukouris AE, Michaelidou K, Joosse SA, Charpidou A, Mavroudis D, Syrigos KN and Agelaki S: A comprehensive overview of minimal residual disease in the management of early-stage and locally advanced non-small cell lung cancer. NPJ Precis Oncol. 9:1782025. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ao X, Yu W, Zhang Y and Wang J: Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. Mol Ther Nucleic Acids. 27:50–72. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ju X, Tang Y, Qu R and Hao S: The emerging role of Circ-SHPRH in cancer. Onco Targets Ther. 14:4177–4188. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mu Q, Lv Y, Luo C, Liu X, Huang C, Xiu Y and Tang L: Research progress on the functions and mechanism of circRNA in cisplatin resistance in tumors. Front Pharmacol. 12:7093242021. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI | |
Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, Ma X, Cheng Z, Yu C, Wang S, et al: circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 12:2952021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Tan S, Li J, Liu WR, Peng Y and Li W: CircRNAs in lung cancer-Biogenesis, function and clinical implication. Cancer Lett. 492:106–115. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Tong J, Li Y, Qiu X, Chen A, Chang C and Yu G: Overview of CircRNAs roles and mechanisms in liver fibrosis. Biomolecules. 13:9402023. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Xu L, Leng S, Sun Y, Huang X, Wang Y, Ren H, Li G, Bai Y, Zhang Z, et al: Nose-to-brain delivery of Circular RNA SCMH1-loaded lipid nanoparticles for ischemic stroke therapy. Adv Mater. 37:e25005982025. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Rafiq M, Yuan H, Li X, Wang S, Wu J, Wei J, Li RK, Guo H and Yang BB: A novel protein NAB1-356 encoded by circRNA circNAB1 mitigates atrial fibrillation by reducing inflammation and fibrosis. Adv Sci (Weinh). 12:e24119592025. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Lei K, Huang F, Jiang Z and Zhou X: Exo-circRNAs: A new paradigm for anticancer therapy. Mol Cancer. 18:562019. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, Liu G, Li X, Yang Y and Chen R: Correction: CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 23:692024. View Article : Google Scholar : PubMed/NCBI | |
Yong W, Deng S, Tan Y and Li S: Circular RNA circSLC8A1 inhibits the proliferation and invasion of non-small cell lung cancer cells through targeting the miR-106b-5p/FOXJ3 axis. Cell Cycle. 20:2597–2606. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qian L, Yu S, Chen Z, Meng Z, Huang S and Wang P: The emerging role of circRNAs and their clinical significance in human cancers. Biochim Biophys Acta Rev Cancer. 1870:247–260. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu JQ, Chen M, Xu J and Zhu D: Circular RNA in cancer development and immune regulation. J Cell Mol Med. 26:1785–1798. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Sun D, Pu W, Wang J and Peng Y: Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer. 6:319–336. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schmidt CA and Matera AG: tRNA introns: Presence, processing, and purpose. Wiley Interdiscip Rev RNA. 11:e15832020. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, Shi GM and Fan J: CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer. 20:752021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z and Huang C: CircRNA as an Achilles heel of cancer: Characterization, biomarker and therapeutic modalities. J Transl Med. 22:7522024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R and Zhang C: The role of the dysregulation of circRNAs expression in glioblastoma multiforme. J Mol Neurosci. 75:92025. View Article : Google Scholar : PubMed/NCBI | |
Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Luo L, Zhang X, Wei C, Zhang Z and Han L: CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother. 151:1131502022. View Article : Google Scholar : PubMed/NCBI | |
Li QH, Liu Y, Chen S, Zong ZH, Du YP, Sheng XJ and Zhao Y: circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI | |
Lv W, Tan Y, Xiong M, Zhao C, Wang Y, Wu M, Wu Y and Zhang Q: Analysis and validation of m6A regulatory network: A novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression. J Transl Med. 19:5272021. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Hu Z, Zhang Y, Zhang X, Xu J, Fu H, Zhu Z, Feng D and Cai Q: CircHIPK3 promotes the tumorigenesis and development of gastric cancer through miR-637/AKT1 pathway. Front Oncol. 11:6377612021. View Article : Google Scholar : PubMed/NCBI | |
Cheng Z, Yu C, Cui S, Wang H, Jin H, Wang C, Li B, Qin M, Yang C, He J, et al: circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 10:32002019. View Article : Google Scholar : PubMed/NCBI | |
He Z and Zhu Q: Circular RNAs: Emerging roles and new insights in human cancers. Biomed Pharmacother. 165:1152172023. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Zou Y, Gao G, Zheng S, Wu S, Xie X and Tang H: The biogenesis, function and clinical significance of circular RNAs in breast cancer. Cancer Biol Med. 10:14–29. 2021.PubMed/NCBI | |
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N and Jiao Y: Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol. 8:772025. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wilusz JE and Chen LL: Biogenesis and regulatory roles of circular RNAs. Annu Rev Cell Dev Biol. 38:263–289. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, et al: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24:1609–1620. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 24:256–264. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Wang H, Chen B, Mao Q, Xia W, Zhang T, Song X, Zhang Z, Xu L, Dong G and Jiang F: circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Mol Ther Nucleic Acids. 23:355–368. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and Xu RH: Circular RNA: Metabolism, functions and interactions with proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI | |
Hollensen AK, Sørensen MH, Thomsen SV, Thomsen HS and Damgaard CK: Using circular RNAs to target toxic RNA-binding proteins in amyotrophic lateral sclerosis. Mol Ther Methods Clin Dev. 33:1015252025. View Article : Google Scholar : PubMed/NCBI | |
Kim KK, Nam J, Mukouyama YS and Kawamoto S: Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. J Cell Biol. 200:443–458. 2013. View Article : Google Scholar : PubMed/NCBI | |
Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 3:170532017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li J, Bian X, Wu C, Hua J, Chang S, Yu T, Li H, Li Y, Hu S, et al: CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc Natl Acad Sci USA. 118:e20128811182021. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Long H, Zheng Q, Bo X, Xiao X and Li B: Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer. 18:1192019. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Yang Y, Wang X, Ren B, Wang X, Shan G and Chen L: Systematic identification and characterization of exon-intron circRNAs. Genome Res. 34:376–393. 2024.PubMed/NCBI | |
Tang X, Ren H, Guo M, Qian J, Yang Y and Gu C: Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 19:910–928. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shafaghat Z, Radmehr S, Saharkhiz S, Khosrozadeh A, Feiz K, Alkhathami AG, Taheripak G, Farani M, Rahmati R, Zarimeidani F, et al: Circular RNA, A molecule with potential chemistry and applications in RNA-based cancer therapeutics: An insight into recent advances. Top Curr Chem (Cham). 383:212025. View Article : Google Scholar : PubMed/NCBI | |
Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–417. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Zhou S, Dain L, Mei L and Zhu G: Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, Xia L, Yin Q, Zou B, Zheng J, et al: A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer. 19:712020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song JX, Wang Y, Hua ZP, Huang Y, Hu LF, Tian MR, Qiu L, Liu H and Zhang J: FATS inhibits the Wnt pathway and induces apoptosis through degradation of MYH9 and enhances sensitivity to paclitaxel in breast cancer. Cell Death Dis. 15:8352024. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Shan G: CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 505:49–57. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Li Y, Huang Y, Wu J, Bao W, Xue C, Li X, Dong S, Dong Z and Hu S: Advances in molecular pathology and therapy of non-small cell lung cancer. Signal Transduct Target Ther. 10:1862025. View Article : Google Scholar : PubMed/NCBI | |
Jang HJ, Min HY, Kang YP, Boo HJ, Kim J, Ahn JH, Oh SH, Jung JH, Park CS, Park JS, et al: Tobacco-induced hyperglycemia promotes lung cancer progression via cancer cell-macrophage interaction through paracrine IGF2/IR/NPM1-driven PD-L1 expression. Nat Commun. 15:49092024. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Xiang X, Wang H, Wang Z, Xing S, Peng W, Ye L, Qu Y, Chen L, Yang B, et al: Tumor cell-intrinsic circular RNA circFNDC3B attenuates CD8+ T cells infiltration in non-small cell lung cancer. Commun Biol. 8:7112025. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Yao H, Zhang P, Sun Y, Ma J and Xia Q: Emerging landscape of circFNDC3B and its role in human malignancies. Front Oncol. 13:10979562023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Luo J, Yang W and Ye WC: CircRNAs in colorectal cancer: Potential biomarkers and therapeutic targets. Cell Death Dis. 14:3532023. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Ma L, Niu Y, Wang Z, Xu X, Li Y and Yu Y: Circular RNA in lung cancer research: Biogenesis, functions, and roles. Int J Biol Sci. 16:803–814. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang PF, Pei X, Li KS, Jin LN, Wang F, Wu J and Zhang XM: Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer. 19:212020. View Article : Google Scholar : PubMed/NCBI | |
Hong W, Xue M, Jiang J, Zhang Y and Gao X: Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39:1492020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, Tang Y, He Y, Liao Q, Li X, et al: The influence of circular RNAs on autophagy and disease progression. Autophagy. 18:240–253. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Zheng Y, Jiang Y, Li X, Geng J, Shen Y, Li Q, Wang X, Zhao C, Chen Y, et al: The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine. 44:182–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang Q, Jiang D, Shao J, Li W and Wang C: CircRNAs in lung cancer- role and clinical application. Cancer Lett. 544:2158102022. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Ma W and Ma C: Circ_0067934 promotes non-small cell lung cancer development by regulating miR-1182/KLF8 axis and activating Wnt/β-catenin pathway. Biomed Pharmacother. 129:1104612020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tong X, Zhou Z, Wang S, Lei Z, Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol Cancer. 17:1402018. View Article : Google Scholar : PubMed/NCBI | |
Xue YB, Ding MQ, Xue L and Luo JH: CircAGFG1 sponges miR-203 to promote EMT and metastasis of non-small-cell lung cancer by upregulating ZNF281 expression. Thorac Cancer. 10:1692–1701. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XH and Zheng J: Invasion and metastasis in cancer: Molecular insights and therapeutic targets. Signal Transduct Target Ther. 10:572025. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Xu L, Jiao Y, Luo S, Li A and Wu K: The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol. 13:252020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu X, Shen T, Wang Q, Zhou S, Yang S, Liao S, Su T, Mei L, Zhang B, et al: Small circular RNAs as vaccines for cancer immunotherapy. Nat Biomed Eng. 9:249–267. 2025. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, He Y, Liao L and Xu L: Circular RNAs perspective: Exploring the direction of immunotherapy for colorectal cancer. Front Oncol. 15:15541792025. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C and Zhou Y: N-methyladenosine-modified circIGF2BP3 inhibits CD8 T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI | |
Tian Q, Wu T, Zhang X, Xu K, Yin X, Wang X, Shi S, Wang P, Gao L, Xu S, et al: Immunomodulatory functions of the circ_001678/miRNA-326/ZEB1 axis in non-small cell lung cancer via the regulation of PD-1/PD-L1 pathway. Hum Mol Genet. 31:4094–4106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han R, Rao X, Zhou H and Lu L: Synergistic immunoregulation: Harnessing CircRNAs and PiRNAs to amplify PD-1/PD-L1 inhibition therapy. Int J Nanomedicine. 19:4803–4834. 2024. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Wu H, Wu J, Ding P, He J, Sang M and Liu L: Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 15:32024. View Article : Google Scholar : PubMed/NCBI | |
Li JX, Huang JM, Jiang ZB, Li RZ, Sun A, Leung ELH and Yan PY: Current clinical progress of PD-1/PD-L1 immunotherapy and potential combination treatment in non-small cell lung cancer. Integr Cancer Ther. 18:15347354198900202019. View Article : Google Scholar : PubMed/NCBI | |
Almawash S: Revolutionary cancer therapy for personalization and improved efficacy: Strategies to overcome resistance to immune checkpoint inhibitor therapy. Cancers (Basel). 17:8802025. View Article : Google Scholar : PubMed/NCBI | |
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-Methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Hu W, Zhou C, Guo J, Yang L and Wang B: Recent advances and perspectives on the development of circular RNA cancer vaccines. NPJ Vaccines. 10:412025. View Article : Google Scholar : PubMed/NCBI | |
Bu T, Yang Z, Zhao J, Gao Y, Li F and Yang R: Expanding the potential of circular RNA (CircRNA) vaccines: A promising therapeutic approach. Int J Mol Sci. 26:3792025. View Article : Google Scholar : PubMed/NCBI | |
Bilotta MT, Antignani A and Fitzgerald DJ: Managing the TME to improve the efficacy of cancer therapy. Front Immunol. 13:9549922022. View Article : Google Scholar : PubMed/NCBI | |
Fridman ES, Ginini L and Gil Z: The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 11:14332022. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Jiang T, Wu C and Zhang Y: CircAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol Lett. 42:1123–1135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Liu H, Niu Q and Gao J: Circ_0000376, a novel circRNA, promotes the progression of non-small cell lung cancer through regulating the miR-1182/NOVA2 network. Cancer Manag Res. 12:7635–7647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Liu Y, Li C, Xu C, Ding C, Chen J and Zhao J: Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat Res Commun. 28:1004122021.PubMed/NCBI | |
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, Li X and Sun Z: Roles of circRNAs in the tumour microenvironment. Mol Cancer. 19:142020. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Yan W, Liu Z, He Y, Hu J, Shu Z, Li H, Othmane B, Ren W, Quan C, et al: Immunomodulatory behavior of CircRNAs in tumor microenvironment. Oncol Res. 33:1105–1119. 2025. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Liu Q, Jia L, Chai Z, Jing L, Xu F and Fan Y: Exosomal circRNAs: Key modulators in breast cancer progression. Cell Death Discov. 11:1962025. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Shuai Y, Gao X, Wen X and Ji J: Circular RNAs in the tumour microenvironment. Mol Cancer. 19:82020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, et al: Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids. 13:312–321. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Lu Y: Circular RNA: Biosynthesis in vitro. Front Bioeng Biotechnol. 9:7878812021. View Article : Google Scholar : PubMed/NCBI | |
Ho CK, Wang LK, Lima CD and Shuman S: Structure and mechanism of RNA ligase. Structure. 12:327–339. 2004. View Article : Google Scholar : PubMed/NCBI | |
Puttaraju M and Been MD: Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res. 20:5357–5364. 1992. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z and Wang Z: Cellular functions and biomedical applications of circular RNAs. Acta Biochim Biophys Sin (Shanghai). 57:157–168. 2024.PubMed/NCBI | |
Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, Liu X, Lv Z, Yang P, Xu W, et al: Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer. 20:1262021. View Article : Google Scholar : PubMed/NCBI | |
Li R, Jiang J, Shi H, Qian H, Zhang X and Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci. 77:1661–1680. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, et al: Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 185:1728–1744. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Li F, He AT and Yang BB: Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther. 29:1683–1702. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wu Y and Jin Y: Exosomal LncRNAs and CircRNAs in lung cancer: Emerging regulators and potential therapeutic targets. Noncoding RNA Res. 9:1069–1079. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lokras AG, Bobak TR, Baghel SS, Sebastiani F and Foged C: Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev. 213:1154192024. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y, et al: Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer. 21:632022. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhao J, Jin M and Zhou M: circRAPGEF5 contributes to papillary thyroid proliferation and metastatis by regulation miR-198/FGFR1. Mol Ther Nucleic Acids. 14:609–616. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang H, Wang A, Gan X, Wu Z and Wang L: CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett. 469:68–77. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 18:902019. View Article : Google Scholar : PubMed/NCBI |