
Mitophagy as a pivotal axis in non‑alcoholic fatty liver disease: From pathogenic mechanisms to therapeutic strategies (Review)
- Authors:
- Yushu Huang
- Xueqing Xia
- Jingyang Xu
- Zihan Wang
- Yanting You
- Qingfeng Du
-
Affiliations: School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China - Published online on: August 27, 2025 https://doi.org/10.3892/mmr.2025.13664
- Article Number: 299
-
Copyright : © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Raza S, Rajak S, Upadhyay A, Tewari A and Anthony Sinha R: Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci (Landmark Ed). 26:206–237. 2021. View Article : Google Scholar : PubMed/NCBI | |
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, et al: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 73:202–209. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, Romero D, Abdelmalek MF, Anstee QM, Arab JP, et al: A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 79:1542–1556. 2023. View Article : Google Scholar : PubMed/NCBI | |
Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C and Henry L: The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology. 77:1335–1347. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Liu Y and Hong T: Epidemiological characteristics and management of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in China: A narrative review. Diabetes Obes Metab. 25 (Suppl 1):S13–S26. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Wang L, Evans PC and Xu S: NAFLD and NASH: Etiology, targets and emerging therapies. Drug Discov Today. 29:1039102024. View Article : Google Scholar : PubMed/NCBI | |
Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H and Guo J: Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne). 13:10872602023. View Article : Google Scholar : PubMed/NCBI | |
Qian H, Chao X, Williams J, Fulte S, Li T, Yang L and Ding WX: Autophagy in liver diseases: A review. Mol Aspects Med. 82:1009732021. View Article : Google Scholar : PubMed/NCBI | |
Ma X, McKeen T, Zhang J and Ding WX: Role and mechanisms of mitophagy in liver diseases. Cells. 9:8372020. View Article : Google Scholar : PubMed/NCBI | |
Ramanathan R, Ali AH and Ibdah JA: Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci. 23:72802022. View Article : Google Scholar : PubMed/NCBI | |
Petrescu M, Vlaicu SI, Ciumărnean L, Milaciu MV, Mărginean C, Florea M, Vesa ȘC and Popa M: Chronic inflammation-A link between nonalcoholic fatty liver disease (NAFLD) and dysfunctional adipose tissue. Medicina (Kaunas). 58:6412022. View Article : Google Scholar : PubMed/NCBI | |
Tarantino G, Citro V and Balsano C: Liver-spleen axis in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 15:759–769. 2021. View Article : Google Scholar : PubMed/NCBI | |
Leung C, Rivera L, Furness JB and Angus PW: The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 13:412–425. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK and Hurt RT: Evolution of NAFLD and its management. Nutr Clin Pract. 35:72–84. 2020. View Article : Google Scholar : PubMed/NCBI | |
Paternostro R and Trauner M: Current treatment of non-alcoholic fatty liver disease. J Intern Med. 292:190–204. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhang W, Zeng LQ, Bai H, Li J, Zhou J, Zhou GY, Fang CW, Wang F and Qin XJ: Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 36:1016352020. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Li J, Yang K and Cao D: An overview of autophagy: Mechanism, regulation and research progress. Bull Cancer. 108:304–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJH, Simon HU, Galluzzi L, Luo S, et al: International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy. 20:1213–1246. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Li X, Zhang Q, Fu C, Jiang W, Xue J, Liu S, Meng Q, Ai L, Zhi X, et al: Autophagy in disease onset and progression. Aging Dis. 15:1646–1671. 2024.PubMed/NCBI | |
Vargas J, Hamasaki M, Kawabata T, Youle RJ and Yoshimori T: The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Bio. 24:167–185. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Yan Y, Yu A, Zhang R, Zhang Y, Qiu Z, Li Z, Zhang Q, Wu S and Li F: Mitophagy in neurodegenerative disease pathogenesis. Neural Regen Res. 19:998–1005. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, et al: Selective autophagy of intracellular organelles: Recent research advances. Theranostics. 11:222–256. 2021. View Article : Google Scholar : PubMed/NCBI | |
Waite KA, Burris A, Vontz G, Lang A and Roelofs J: Proteaphagy is specifically regulated and requires factors dispensable for general autophagy. J Biol Chem. 298:1014942022. View Article : Google Scholar : PubMed/NCBI | |
Hsiao PJ, Chiou HC, Jiang HJ, Lee MY, Hsieh TJ and Kuo KK: Pioglitazone enhances cytosolic lipolysis, β-oxidation and autophagy to ameliorate hepatic steatosis. Sci Rep. 7:90302017. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Sun Z, Jia X, Li L, Wu Y, Wu C, Lin L, Liu J and Zeng B: Lipophagy: Molecular mechanisms and implications in hepatic lipid metabolism. Front Biosci (Landmark Ed). 28:62023. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Peng X, Yang S, Li X, Huang M, Wei S, Liu J, He G, Zheng H, Yang L, et al: The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 13:1322022. View Article : Google Scholar : PubMed/NCBI | |
Laval T and Ouimet M: A role for lipophagy in atherosclerosis. Nat Rev Cardiol. 20:431–432. 2023. View Article : Google Scholar : PubMed/NCBI | |
Robichaud S, Fairman G, Vijithakumar V, Mak E, Cook DP, Pelletier AR, Huard S, Vanderhyden BC, Figeys D, Lavallée-Adam M, et al: Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 17:3671–3689. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pu M, Zheng W, Zhang H, Wan W, Peng C, Chen X, Liu X, Xu Z, Zhou T, Sun Q, et al: ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein Cell. 14:653–667. 2023.PubMed/NCBI | |
Chung J, Park J, Lai ZW, Lambert TJ, Richards RC, Zhang J, Walther TC and Farese RV Jr: The Troyer syndrome protein spartin mediates selective autophagy of lipid droplets. Nat Cell Biol. 25:1101–1110. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang Z, Zhao Q, Yang Q, Bai J, Yang C, Zhang ZR and Liu Y: USP20 deubiquitinates and stabilizes the reticulophagy receptor RETREG1/FAM134B to drive reticulophagy. Autophagy. 20:1780–1797. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gubas A and Dikic I: ER remodeling via ER-phagy. Mol Cell. 82:1492–1500. 2022. View Article : Google Scholar : PubMed/NCBI | |
Reggiori F and Molinari M: ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev. 102:1393–1448. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW and Zhao G: The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 8:3042023. View Article : Google Scholar : PubMed/NCBI | |
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A and Monsalve M: Mitophagy in human diseases. Int J Mol Sci. 22:39032021. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Li Z, Zhang S, Zhang T, Liu Y and Zhang L: Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 13:736–766. 2023. View Article : Google Scholar : PubMed/NCBI | |
Degli Esposti M: Did mitophagy follow the origin of mitochondria? Autophagy. 20:985–993. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Wei X, Yi X and Jiang DS: Mitophagy-related regulated cell death: Molecular mechanisms and disease implications. Cell Death Dis. 15:5052024. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Cao Y, Wang D, Zhou Y, Zhang P, Wu J, Chen J, Qiu J and Zhou J: Zhen-Wu-Tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways. Front Pharmacol. 12:7776702021. View Article : Google Scholar : PubMed/NCBI | |
Poole LP and Macleod KF: Mitophagy in tumorigenesis and metastasis. Cell Mol Life Sci. 78:3817–3851. 2021. View Article : Google Scholar : PubMed/NCBI | |
Allaire M, Rautou PE, Codogno P and Lotersztajn S: Autophagy in liver diseases: Time for translation? J Hepatol. 70:985–998. 2019. View Article : Google Scholar : PubMed/NCBI | |
An L, Wirth U, Koch D, Schirren M, Drefs M, Koliogiannis D, Niess H, Andrassy J, Guba M, Bazhin AV, et al: Metabolic role of autophagy in the pathogenesis and development of NAFLD. Metabolites. 13:1012023. View Article : Google Scholar : PubMed/NCBI | |
González-Rodríguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillón J, Lo Iacono O, Corazzari M, Fimia GM, et al: Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5:e11792014. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Lin Y, Liang G, Xiao N, Zhang H, Yang X, Yang J and Liu A: Autophagy and senescence: The molecular mechanisms and implications in liver diseases. Int J Mol Sci. 24:168802023. View Article : Google Scholar : PubMed/NCBI | |
Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, Chatzigeorgiou A, Kalotychou V, Randeva MS, Chatha K, et al: Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE(−/-) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci. 22:8182021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang F, Shi Y, Sheng J, Wang Y, Zhang L, Zhou J, Jin Y and Yan Y: RNF31 alleviates liver steatosis by promoting p53/BNIP3-related mitophagy in hepatocytes. Free Radical Bio Med. 219:163–179. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nazeer B, Khawar MB, Khalid MU, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Ali A, Fatima H and Ahmad S: Emerging role of lipophagy in liver disorders. Mol Cell Biochem. 479:1–11. 2024. View Article : Google Scholar : PubMed/NCBI | |
Scorletti E and Carr RM: A new perspective on NAFLD: Focusing on lipid droplets. J Hepatol. 76:934–945. 2022. View Article : Google Scholar : PubMed/NCBI | |
Grefhorst A, van de Peppel IP, Larsen LE, Jonker JW and Holleboom AG: The role of lipophagy in the development and treatment of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne). 11:6016272021. View Article : Google Scholar : PubMed/NCBI | |
Zechner R, Madeo F and Kratky D: Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nat Rev Mol Cell Biol. 18:671–684. 2017. View Article : Google Scholar : PubMed/NCBI | |
Byrnes K, Blessinger S, Bailey NT, Scaife R, Liu G and Khambu B: Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B. 12:33–49. 2022. View Article : Google Scholar : PubMed/NCBI | |
Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y, Taminishi S, Nishiji T, Taruno A, Fukui M, et al: Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun. 14:40842023. View Article : Google Scholar : PubMed/NCBI | |
Gusdon AM, Song KX and Qu S: Nonalcoholic fatty liver disease: Pathogenesis and therapeutics from a mitochondria-centric perspective. Oxid Med Cell Longev. 2014:6370272014. View Article : Google Scholar : PubMed/NCBI | |
Aryapour E and Kietzmann T: Mitochondria, mitophagy, and the role of deubiquitinases as novel therapeutic targets in liver pathology. J Cell Biochem. 123:1634–1646. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Park JS and Roh YS: Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res. 42:935–946. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moore MP, Cunningham RP, Meers GM, Johnson SA, Wheeler AA, Ganga RR, Spencer NM, Pitt JB, Diaz-Arias A, Swi AIA, et al: Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology. 76:1452–1465. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jian L, Guo Y, Tang C, Huang Z and Gao J: Liver cell mitophagy in metabolic dysfunction-associated steatotic liver disease and liver fibrosis. Antioxidants (Basel). 13:7292024. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Chen X, Pan F, Wang M, Zhuang H, Chen J, Lu L, Wang L and Wang T: Xinmaikang-mediated mitophagy attenuates atherosclerosis via the PINK1/Parkin signaling pathway. Phytomedicine. 119:1549552023. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Ruan Y, Zhu X, Lin X, Xin Y, Li X, Mai M and Guo H: Deoxycholic acid promotes pyroptosis in free fatty acid-induced steatotic hepatocytes by inhibiting PINK1-mediated mitophagy. Inflammation. 45:639–650. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Chang L, Luo Y, Zhou Y and Zhang J: Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol. 21:1011202019. View Article : Google Scholar : PubMed/NCBI | |
Edmunds LR, Xie B, Mills AM, Huckestein BR, Undamatla R, Murali A, Pangburn MM, Martin J, Sipula I, Kaufman BA, et al: Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin resistance. Mol Metab. 41:1010512020. View Article : Google Scholar : PubMed/NCBI | |
Xu ZX, Li JZ, Li Q, Xu MY and Li HY: CircRNA608-microRNA222-PINK1 axis regulates the mitophagy of hepatic stellate cells in NASH related fibrosis. Biochem Biophys Res Commun. 610:35–42. 2022. View Article : Google Scholar : PubMed/NCBI | |
He H, Tang Y, Zhuang L, Zheng Y and Huang X: PINK1/Park2-mediated mitophagy relieve non-alcoholic fatty liver disease. Physiol Res. 73:253–263. 2024.PubMed/NCBI | |
Matsuda S, Kobayashi M and Kitagishi Y: Roles for PI3K/AKT/PTEN pathway in cell signaling of nonalcoholic fatty liver disease. ISRN Endocrinol. 2013:4724322013. View Article : Google Scholar : PubMed/NCBI | |
Shamsan E, Almezgagi M, Gamah M, Khan N, Qasem A, Chuanchuan L and Haining F: The role of PI3k/AKT signaling pathway in attenuating liver fibrosis: A comprehensive review. Front Med (Lausanne). 11:13893292024. View Article : Google Scholar : PubMed/NCBI | |
Tsuji A, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Morikawa S, Nakashima M, Asai T and Matsuda S: Tactics with prebiotics for the treatment of metabolic dysfunction-associated fatty liver disease via the improvement of mitophagy. Int J Mol Sci. 24:54652023. View Article : Google Scholar : PubMed/NCBI | |
Aslam M and Ladilov Y: Emerging role of cAMP/AMPK signaling. Cells. 11:3082022. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Xuan W and Li J, Yao H, Huang C and Li J: AMPK protects against alcohol-induced liver injury through UQCRC2 to up-regulate mitophagy. Autophagy. 17:3622–3643. 2021. View Article : Google Scholar : PubMed/NCBI | |
Desjardins EM, Smith BK, Day EA, Ducommun S, Sanders MJ, Nederveen JP, Ford RJ, Pinkosky SL, Townsend LK, Gutgesell RM, et al: The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids. Proc Natl Acad Sci USA. 119:e21198241192022. View Article : Google Scholar : PubMed/NCBI | |
Gu M, Luo L and Fang K: Crocin inhibits obesity via AMPK-dependent inhibition of adipocyte differentiation and promotion of lipolysis. Biosci Trends. 12:587–594. 2018. View Article : Google Scholar : PubMed/NCBI | |
Herzig S and Shaw RJ: AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19:121–135. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J and Han D: The AMPK pathway in fatty liver disease. Front Physiol. 13:9702922022. View Article : Google Scholar : PubMed/NCBI | |
Marcondes-de-Castro IA, Reis-Barbosa PH, Marinho TS, Aguila MB and Mandarim-de-Lacerda CA: AMPK/mTOR pathway significance in healthy liver and non-alcoholic fatty liver disease and its progression. J Gastroenterol Hepatol. 38:1868–1876. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang Q, Meng Y, Zhao T, Mu C, Fu C, Deng C, Feng J, Du S, Liu W, et al: Saturated fatty acids increase LPI to reduce FUNDC1 dimerization and stability and mitochondrial function. EMBO Rep. 24:e547312023. View Article : Google Scholar : PubMed/NCBI | |
Lian CY, Li HJ, Xia WH, Li Y, Zhou XL, Yang DB, Wan XM and Wang L: Insufficient FUNDC1-dependent mitophagy due to early environmental cadmium exposure triggers mitochondrial redox imbalance to aggravate diet-induced lipotoxicity. Environ Pollut. 361:1247242024. View Article : Google Scholar : PubMed/NCBI | |
Li L, Martin-Levilain J, Jiménez-Sánchez C, Karaca M, Foti M, Martinou JC and Maechler P: In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way. J Biol Chem. 294:12581–12598. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mucinski JM, Manrique-Acevedo C, Kasumov T, Garrett TJ, Gaballah A and Parks EJ: Relationships between very low-density lipoproteins-ceramides, -diacylglycerols, and -triacylglycerols in insulin-resistant men. Lipids. 55:387–393. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, et al: Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol. 8:831–838. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim KM and Kim SG: Autophagy and microRNA dysregulation in liver diseases. Arch Pharm Res. 37:1097–1116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Li Y, Wen S, Xu C, Wang C, He Y and Zhou L: CircLDLR acts as a sponge for miR-667-5p to regulate SIRT1 expression in non-alcoholic fatty liver disease. Lipids Health Dis. 21:1272022. View Article : Google Scholar : PubMed/NCBI | |
Dong M, Zhang T, Liang X, Cheng X, Shi F, Yuan H, Zhang F, Jiang Q and Wang X: Sesamin alleviates lipid accumulation induced by oleic acid via PINK1/Parkin-mediated mitophagy in HepG2 cells. Biochem Biophys Res Commun. 708:1498152024. View Article : Google Scholar : PubMed/NCBI | |
Li W, Cai Z, Schindler F, Afjehi-Sadat L, Montsch B, Heffeter P, Heiss EH and Weckwerth W: Elevated PINK1/Parkin-dependent mitophagy and boosted mitochondrial function mediate protection of hepg2 cells from excess palmitic acid by hesperetin. J Agric Food Chem. 72:13039–13053. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, You Y, Xu J, Jiang H, Jiang J, Su Z, Chao Z, Du Q and He F: New sesquiterpenes and viridin derivatives from Penicillium sp. Ameliorates NAFLD by regulating the PINK1/Parkin mitophagy pathway. Bioorg Chem. 151:1076562024. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Yu M, Wu Y, Xia T, Wang L, Song K, Zhang C, Lu K and Rahimnejad S: Hydroxytyrosol promotes the mitochondrial function through activating mitophagy. Antioxidants (Basel). 11:8932022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Shi Z, Zhu Y, Shen T, Wang H, Shui G, Loor JJ, Fang Z, Chen M, Wang X, et al: Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice. Br J Pharmacol. 177:3591–3607. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Li X, Wang W, Ren P, Song S, Wang H, Xie Y, Li X and Li Z: Corn peptides attenuate non-alcoholic fatty liver disease via PINK1/Parkin-mediated mitochondrial autophagy. Food Nutr Res. 672023.PubMed/NCBI | |
Wu Y, Kuang Y, Wu Y, Dai H, Bi R, Hu J and Sun L: Yang-Gan-Jiang-Mei formula alleviates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome through mitophagy. Biotechnol Genet Eng Rev. 40:1314–1333. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dou SD, Zhang JN, Xie XL, Liu T, Hu JL, Jiang XY, Wang MM and Jiang HD: MitoQ inhibits hepatic stellate cell activation and liver fibrosis by enhancing PINK1/parkin-mediated mitophagy. Open Med (Wars). 16:1718–1727. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song YW, Zhu YH and Ma MZ: Furin inhibits HSCs activation and ameliorates liver fibrosis by regulating PTEN-L/PINK1/parkin mediated mitophagy in mouse. FASEB Bioadv. 7:e700092025. View Article : Google Scholar : PubMed/NCBI | |
Mehmood A, Zhao L, Wang Y, Pan F, Hao S, Zhang H, Iftikhar A and Usman M: Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Res Int. 142:1101802021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yan S, Xiang Q, Liang J, Deng X, He W, Cheng Y and Yang L: Network analysis and experimental verification of Salvia miltiorrhiza Bunge-Reynoutria japonica Houtt. drug pair in the treatment of non-alcoholic fatty liver disease. BMC Complement Med Ther. 24:3052024. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Zhang J, Hou J, Hui M, Qi H, Lei T, Zhang X, Zhao L and Du H: Induction of autophagy via the PI3K/Akt/mTOR signaling pathway by Pueraria flavonoids improves non-alcoholic fatty liver disease in obese mice. Biomed Pharmacother. 157:1140052023. View Article : Google Scholar : PubMed/NCBI | |
Sarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, Saigal S, Saraf N, Soin AS, Devarbhavi H, et al: Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific association for the study of the liver (APASL): An update. Hepatol Int. 13:353–390. 2019. View Article : Google Scholar : PubMed/NCBI | |
Axley P, Ahmed Z, Arora S, Haas A, Kuo YF, Kamath PS and Singal AK: NASH is the most rapidly growing etiology for acute-on-chronic liver failure-related hospitalization and disease burden in the United States: A population-based study. Liver Transpl. 25:695–705. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Huang Q, Ma W, Yi J, Zhong X, Hu R, Sun J, Ma M, Lv M, Han Z, et al: Hepatoprotective efficacy and interventional mechanism of JianPi LiShi YangGan formula in acute-on-chronic liver failure. J Ethnopharmacol. 318:1168802024. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Sun F, Deng K, Lin G, Yin W, Chen H, Yang D, Liu K, Zhang Y and Huang L: Mallotucin D, a clerodane diterpenoid from Croton crassifolius, suppresses HepG2 cell growth via inducing autophagic cell death and pyroptosis. Int J Mol Sci. 23:142172022. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Inta A, Yang X, Pandith H, Disayathanoowat T and Yang L: An investigation of the effect of the traditional naxi herbal formula against liver cancer through network pharmacology, molecular docking, and in vitro experiments. Pharmaceuticals (Basel). 17:14292024. View Article : Google Scholar : PubMed/NCBI | |
Liu JS, Huo CY, Cao HH, Fan CL, Hu JY, Deng LJ, Lu ZB, Yang HY, Yu LZ, Mo ZX and Yu ZL: Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway. Phytomedicine. 61:1528432019. View Article : Google Scholar : PubMed/NCBI | |
Mottillo EP, Desjardins EM, Crane JD, Smith BK, Green AE, Ducommun S, Henriksen TI, Rebalka IA, Razi A, Sakamoto K, et al: Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 24:118–129. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ and Steinberg GR: Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am J Physiol Endocrinol Metab. 311:E730–E740. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cao P, Wang Y, Zhang C, Sullivan MA, Chen W, Jing X, Yu H, Li F, Wang Q, Zhou Z, et al: Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. J Nutr Biochem. 120:1094142023. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Guo J, Du B, Hong L, Zhu Y, Feng X, Hou Y and Shi A: Effects of Shenling Baizhu powder on intestinal microflora metabolites and liver mitochondrial energy metabolism in nonalcoholic fatty liver mice. Front Microbiol. 14:11470672023. View Article : Google Scholar : PubMed/NCBI | |
Lv T, Fan X, He C, Zhu S, Xiong X, Yan W, Liu M, Xu H, Shi R and He Q: SLC7A11-ROS/αKG-AMPK axis regulates liver inflammation through mitophagy and impairs liver fibrosis and NASH progression. Redox Biol. 72:1031592024. View Article : Google Scholar : PubMed/NCBI | |
Song N, Xu H, Wu S, Luo S, Xu J, Zhao Q, Wang R and Jiang X: Synergistic activation of AMPK by AdipoR1/2 agonist and inhibitor of EDPs-EBP interaction recover NAFLD through enhancing mitochondrial function in mice. Acta Pharm Sin B. 13:542–558. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ren K, Su H, Lv LJ, Yi LT, Gong X, Dang LS, Zhang RF and Li MH: Effects of four compounds from Gentianella acuta (Michx.) hulten on hydrogen peroxide-induced injury in H9c2 cells. Biomed Res Int. 2019:26929702019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wu J, Chen Q, Yu H, Liu M, Wang Y, Zhang Y and Wang T: 7′-Hydroxyl substituted xanthones from Gentianella acuta revert hepatic steatosis in obese diabetic mice through preserving mitochondrial homeostasis. Biochem Pharmacol. 236:1168782025. View Article : Google Scholar : PubMed/NCBI | |
Li W, Li Y, Siraj S, Jin H, Fan Y, Yang X, Huang X, Wang X, Wang J, Liu L, et al: FUN14 Domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology. 69:604–621. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Chen W, Liu Y, Yu L, Mao X, Guo X, Jiang F, Guo Q, Lin N and Zhang Y: Artesunate Sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy. Autophagy. 20:541–556. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Zhang D, Sun J, Zhang Q, Qiao Y, Zhu Y, Niu J, Ren Q, Zhou L, Wen A and Wang J: Formononetin inhibits hepatic I/R-induced injury through regulating PHB2/PINK1/Parkin pathway. Oxid Med Cell Longev. 2022:64811922022. View Article : Google Scholar : PubMed/NCBI | |
Kalavalapalli S, Bril F, Koelmel JP, Abdo K, Guingab J, Andrews P, Li WY, Jose D, Yost RA, Frye RF, et al: Pioglitazone improves hepatic mitochondrial function in a mouse model of nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab. 315:E163–E173. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zhao J, Zhao Y, Li W, Zhao L, Ren Y, Ou R and Xu Y: Hsa_circ_0048179 attenuates free fatty acid-induced steatosis via hsa_circ_0048179/miR-188-3p/GPX4 signaling. Aging (Albany NY). 12:23996–24008. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Huang F, Chen B, Kang J, Yao Y, Liua M, Li Y, Li Y, Zhou T, Peng D, et al: A classical herbal formula alleviates high-fat diet induced nonalcoholic steatohepatitis (NASH) via targeting mitophagy to rehabilitate dysfunctional mitochondria, validated by UPLC-HRMS identification combined with in vivo experiment. Biomed Pharmacother. 168:1158312023. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Long J, Yang Y, Yang F and Wei Y: Gentiana decoction inhibits liver fibrosis and the activation of hepatic stellate cells via upregulating the expression of Parkin. Fitoterapia. 178:1061702024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen HN, Wang K, Zhang L, Huang Z, Liu J, Zhang Z, Luo M, Lei Y, Peng Y, et al: Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma. J Hepatol. 70:66–77. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bano A, Chaker L, Plompen EP, Hofman A, Dehghan A, Franco OH, Janssen HL, Darwish Murad S and Peeters RP: Thyroid function and the risk of nonalcoholic fatty liver disease: The rotterdam study. J Clin Endocrinol Metab. 101:3204–3211. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bruinstroop E, Dalan R, Cao Y, Bee YM, Chandran K, Cho LW, Soh SB, Teo EK, Toh SA, Leow MKS, et al: Low-dose levothyroxine reduces intrahepatic lipid content in patients with type 2 diabetes mellitus and NAFLD. J Clin Endocrinol Metab. 103:2698–2706. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Sinha RA and Yen PM: The roles of autophagy and thyroid hormone in the pathogenesis and treatment of NAFLD. Hepatoma Res. 7:722021.PubMed/NCBI | |
Harrison SA, Bashir MR, Guy CD, Zhou R, Moylan CA, Frias JP, Alkhouri N, Bansal MB, Baum S, Neuschwander-Tetri BA, et al: Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 394:2012–2024. 2019. View Article : Google Scholar : PubMed/NCBI | |
Keam SJ: Resmetirom: First approval. Drugs. 84:729–735. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Seo KH, Yang JH, Cho SS, Kim NY, Kim JH, Kim KM and Ki SH: CCCP induces hepatic stellate cell activation and liver fibrogenesis via mitochondrial and lysosomal dysfunction. Free Radic Biol Med. 225:181–192. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Cao J and Yao S: Matrine promotes liver cancer cell apoptosis by inhibiting mitophagy and PINK1/Parkin pathways. Cell Stress Chaperones. 23:1295–1309. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Wang T, Liu Y, Li X, Xu S, Wu C, Zou H, Cao M, Jin G, Lang J, et al: Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent axis. J Exp Clin Canc Res. 39:2742020. View Article : Google Scholar : PubMed/NCBI | |
Yu SX, Liang ZM, Wu QB, Shou L, Huang XX, Zhu QR, Xie H, Mei RY, Zhang RN, Zhai XY, et al: A novel diagnostic and therapeutic strategy for cancer patients by integrating Chinese medicine syndrome differentiation and precision medicine. Chin J Integr Med. 28:867–871. 2022. View Article : Google Scholar : PubMed/NCBI |