
Circular RNAs: Fundamental mechanisms in tumor metastasis and detection strategies (Review)
- Authors:
- Xiangjun Dong
- Yinwei Che
- Yuzhuo Jiao
- Hao Dong
- Qingchao Ren
- Huashan Sun
- Tao Zhao
-
Affiliations: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory of Perioperative Precise Anesthesia and Organ Protection Mechanism Research, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China - Published online on: August 28, 2025 https://doi.org/10.3892/mmr.2025.13667
- Article Number: 302
-
Copyright: © Dong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and Xu RH: Circular RNA: Metabolism, functions and interactions with proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly Base-paired rod-like structures. Proc Natl Acad Sci. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI | |
Beermann J, Piccoli MT, Viereck J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Yang B, Liu W, Tan C, Chen H and Wang X: Emerging role of non-coding RNAs in neuroinflammation mediated by microglia and astrocytes. J Neuroinflammation. 20:1732023. View Article : Google Scholar : PubMed/NCBI | |
Wang ZY, Liu XX and Deng YF: Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction. Cell Death Differ. 29:709–721. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Sun B, Huang S and Zhao L: Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis. 10:5032019. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F and Yuan LQ: Adipose exosomal noncoding RNAs: Roles and mechanisms in metabolic diseases. Obes Rev. 25:e137402024. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Jakobsen T, Hager H and Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar : PubMed/NCBI | |
Conn VM, Chinnaiyan AM and Conn SJ: Circular RNA in cancer. Nat Rev Cancer. 24:597–613. 2024. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S and Weinberg RA: Tumor metastasis: Molecular insights and evolving paradigms. Cell. 147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu QL, Zhang Z, Wei X and Zhou ZG: Noncoding RNAs in tumor metastasis: Molecular and clinical perspectives. Cell Mol Life Sci. 78:6823–6850. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fidler IJ: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gerstberger S, Jiang Q and Ganesh K: Metastasis. Cell. 186:1564–1579. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chambers AF, Groom AC and MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2:563–572. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL and Yang L: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26:1277–1287. 2016. View Article : Google Scholar : PubMed/NCBI | |
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73:1019–1030. 1993. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Liu B, Xu J, Zhang B, Wang Y, Shi L and Cai X: Circular RNAs: Characteristics, biogenesis, mechanisms and functions in liver cancer. J Hematol Oncol. 14:1342021. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, et al: circRNA biogenesis competes with Pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wilusz JE and Chen LL: Biogenesis and regulatory roles of circular RNAs. Annu Rev Cell Dev Biol. 38:263–289. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu CX and Chen LL: Circular RNAs: Characterization, cellular roles, and applications. Cell. 185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Tang J, Wang H, Guo X, Tu C and Li Z: The crosstalk between alternative splicing and circular RNA in cancer: Pathogenic insights and therapeutic implications. Cell Mol Biol Lett. 29:1422024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Sun D, Pu W, Wang J and Peng Y: Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer. 6:319–336. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu CY and Kuo HC: The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 26:292019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tran AM, Chalbatani GM, Berland L, Cruz De los Santos M, Raj P, Jalali SA, Gharagouzloo E, Ivan C, Dragomir MP and Calin GA: A new world of biomarkers and therapeutics for female reproductive system and breast cancers: Circular RNAs. Front Cell Dev Biol. 8:502020. View Article : Google Scholar : PubMed/NCBI | |
He X, Xu T, Hu W, Tan Y, Wang D, Wang Y, Zhao C, Yi Y, Xiong M, Lv W, et al: Circular RNAs: Their role in the pathogenesis and orchestration of breast cancer. Front Cell Dev Biol. 9:6477362021. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L and Zhou L: Circular RNAs in cancer. MedComm. 6:e700792025. View Article : Google Scholar : PubMed/NCBI | |
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shang R, Lee S, Senavirathne G and Lai EC: microRNAs in action: Biogenesis, function and regulation. Nat Rev Genet. 24:816–833. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yang J, Fei X, Wang X and Wang K: CircRNA ciRS-7: A novel oncogene in multiple cancers. Int J Biol Sci. 17:379–389. 2021. View Article : Google Scholar : PubMed/NCBI | |
Su C, Han Y, Zhang H, Li Y, Yi L, Wang X, Zhou S, Yu D, Song X, Xiao N, et al: CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-κB signalling. J Cell Mol Med. 22:3097–3107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hu H and Zhao Y and Zhao Y: CDR1as is overexpressed in laryngeal squamous cell carcinoma to promote the tumour's progression via miR-7 signals. Cell Prolif. 51:e125212018. View Article : Google Scholar : PubMed/NCBI | |
Li F, Yang Q, He AT and Yang BB: Circular RNAs in cancer: Limitations in functional studies and diagnostic potential. Semin Cancer Biol. 75:49–61. 2021. View Article : Google Scholar : PubMed/NCBI | |
Matia-González AM, Laing EE and Gerber AP: Conserved mRNA-binding proteomes in eukaryotic organisms. Nat Struct Mol Biol. 22:1027–1033. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Liu Q and Shyr Y: Dysregulated transcription across diverse cancer types reveals the importance of RNA-binding protein in carcinogenesis. BMC Genomics. 16 (Suppl):S52015. View Article : Google Scholar : PubMed/NCBI | |
Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS and Li B: New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond). 42:117–140. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Sun Z, Lei Z and Zhang HT: RNA-binding proteins and cancer metastasis. Semin Cancer Biol. 86:748–768. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Liu K, Huang X, Tian S, Wang H, Zhang C, Ye J, Dong Y, An Z, Ma X, et al: EIF4A3-mediated biogenesis of circSTX6 promotes bladder cancer metastasis and cisplatin resistance. J Exp Clin Cancer Res. 43:22024. View Article : Google Scholar : PubMed/NCBI | |
Li R, Wang J, Xie Z, Tian X, Hou J, Wang D, Qian H, Shen H and Xu W: CircUSP1 as a novel marker promotes gastric cancer progression via stabilizing HuR to upregulate USP1 and Vimentin. Oncogene. 43:1033–1049. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gu C, Shi X, Dai C, Shen F, Rocco G, Chen J, Huang Z and Chen C, He C, Huang T and Chen C: RNA m6A modification in cancers: Molecular mechanisms and potential clinical applications. Innovation (Camb). 1:1000662020.PubMed/NCBI | |
Zhu ZM, Huo FC, Zhang J, Shan HJ and Pei DS: Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med. 13:e14602023. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Huang C, Liu F, Zhang H, Xiao X, Sun J, Zhang X and Jiang G: CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer. 20:682021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yang HY, Dai XY, Zhang X, Huang YZ, Shi L, Wei JF and Ding Q: CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression. Int J Biol Sci. 17:1178–1190. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ruan H, Gu W, Xia W, Gong Y, Zhou X, Chen W and Xiong J: METTL3 is suppressed by circular RNA circMETTL3/miR-34c-3p signaling and limits the tumor growth and metastasis in triple negative breast cancer. Front Oncol. 11:7781322021. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Guo M, Zhang Y, Lv J, Gu C and Yang Y: Examining the evidence for mutual modulation between m6A modification and circular RNAs: Current knowledge and future prospects. J Exp Clin Cancer Res. 43:2162024. View Article : Google Scholar : PubMed/NCBI | |
Wang KS, Choo QL, Weiner AJ, Ou JH, Najarian RC, Thayer RM, Mullenbach GT, Denniston KJ, Gerin JL and Houghton M: Structure, sequence and expression of the hepatitis delta (delta) viral genome. Nature. 323:508–514. 1986. View Article : Google Scholar : PubMed/NCBI | |
Margvelani G, Maquera KAA, Welden JR, Rodgers DW and Stamm S: Translation of circular RNAs. Nucleic Acids Res. 53:gkae11672025. View Article : Google Scholar : PubMed/NCBI | |
Hwang HJ and Kim YK: Molecular mechanisms of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y, Chen X, Liang Y, Zhang N, Wang X, et al: CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation. Mol Cancer. 23:1022024. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Li M, Xue C, Chen S, Zheng L, Deng H, Tang F, Li G, Xiong W, Zeng Z and Zhou M: Understanding the roles and regulation patterns of circRNA on its host gene in tumorigenesis and tumor progression. J Exp Clin Cancer Res. 42:862023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang J, Zhang C, Lin C, Zhang J, Zhang W, Zhang W, Lu Y, Zheng L and Li X: Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J Pathol. 246:166–179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang S, Chen Z, He Z, Xu Y and Li Z: CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 10:8852019. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Wang S, Qin T and Wang W: Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3. J Cell Biochem. 121:3516–3525. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, Jing J, Zhou X and Pan W: Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 12:4432021. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Yang Y, Zhao X, Fan Y, Zhou L, Rong J and Yu Y: Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis. 10:7922019. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li H, Lu Y and Cheng L: Regulatory effects of circular RNAs on host genes in human cancer. Front Oncol. 10:5861632021. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Jiang J, Qian H, Yan Y and Xu W: Exosomal circRNA: Emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 16:672023. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, He X, He Y, Ou C and Cao P: Exosomal circRNAs: Emerging players in tumor metastasis. Front Cell Dev Biol. 9:7862242021. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020. View Article : Google Scholar : PubMed/NCBI | |
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C and Jiang Y: Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 5:1452020. View Article : Google Scholar : PubMed/NCBI | |
Zhu C, Su Y, Liu L, Wang S, Liu Y and Wu J: Circular RNA hsa_circ_0004277 Stimulates malignant phenotype of hepatocellular carcinoma and Epithelial-mesenchymal transition of peripheral cells. Front Cell Dev Biol. 8:5855652021. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L and Shu Y: Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther. 30:3133–3154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang G, Liu CG, Xiang X, Le MTN, Sethi G, Wang L, Goh BC and Ma Z: The potential role of exosomal circRNAs in the tumor microenvironment: Insights into cancer diagnosis and therapy. Theranostics. 12:87–104. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wu S, Zheng X, Zheng P, Fu Y, Wu C, Lu B, Ju J and Jiang J: Immune suppressed tumor microenvironment by exosomes derived from gastric cancer cells via modulating immune functions. Sci Rep. 10:147492020. View Article : Google Scholar : PubMed/NCBI | |
Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, Akbari ME and Eskandari N: Cancer exosomes and natural killer cells dysfunction: Biological roles, clinical significance and implications for immunotherapy. Mol Cancer. 21:152022. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Liu Y, Li C, Xu C, Ding C, Chen J and Zhao J: Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat Res Commun. 28:1004122021.PubMed/NCBI | |
Vahabi A, Rezaie J, Hassanpour M, Panahi Y and Nemati M, Rasmi Y and Nemati M: Tumor Cells-derived exosomal CircRNAs: Novel cancer drivers, molecular mechanisms, and clinical opportunities. Biochem Pharmacol. 200:1150382022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y and Cao Y: The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol. 86:251–261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, et al: N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene. 43:2548–2563. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang Y, Wang Z, Fu X, Chu XM, Li Y, Wang Q, He X, Li M, Wang K, et al: Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis. 298:14–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Luo Y, Zhao Y, Kong Y, Zheng H, Li Y, Gao B, Ai L, Huang H, Huang J, et al: circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Mol Ther. 29:1838–1852. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Shuai Y, Gao X, Wen X and Ji J: Circular RNAs in the tumour microenvironment. Mol Cancer. 19:82020. View Article : Google Scholar : PubMed/NCBI | |
Duan S, Wang S, Huang T, Wang J and Yuan X: circRNAs: Insight into their role in Tumor-associated macrophages. Front Oncol. 11:7807442021. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Shi W, Hu W, Zhao Y, Zhao X, Dong F, Xin Y, Peng T and Liu C: Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression. Pharmacol Res. 177:1060982022. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Tang D, Lin J, Huang X, Lin S, Shen G and Dai Y: Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol Ther Oncolytics. 24:470–485. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Zhou S, Li J, Zhou Z, Wang P, Xin H, Mao L, Luo C, Yu S, Huang XW, et al: Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology. 72:906–922. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sarnaik AA, Hwu P, Mulé JJ and Pilon-Thomas S: Tumor-infiltrating lymphocytes: A new hope. Cancer Cell. 42:1315–1318. 2024. View Article : Google Scholar : PubMed/NCBI | |
Weng Q, Chen M, Li M, Zheng YF, Shao G, Fan W, Xu XM and Ji J: Global microarray profiling identified hsa_circ_0064428 as a potential immune-associated prognosis biomarker for hepatocellular carcinoma. J Med Genet. 56:32–38. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei CY, Zhu MX, Lu NH, Liu JQ, Yang YW, Zhang Y, Shi YD, Feng ZH, Li JX, Qi FZ and Gu JY: Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol Cancer. 19:842020. View Article : Google Scholar : PubMed/NCBI | |
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS and Hirsch FR: PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 18:345–362. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M and Xiang B: Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer. 23:1082024. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Pan S, Chen X, Wang Z and Zhu X: The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer. 20:1162021. View Article : Google Scholar : PubMed/NCBI | |
Hong W, Xue M, Jiang J, Zhang Y and Gao X: Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39:1492020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Gao P, Cao D, Dong R, Zhu M, Fei Y, Zuo X and Cai J: CircRHBDD1 promotes immune escape via IGF2BP2/PD-L1 signaling and acts as a nanotherapeutic target in gastric cancer. J Transl Med. 22:7042024. View Article : Google Scholar : PubMed/NCBI | |
Chan IS and Ewald AJ: The changing role of natural killer cells in cancer metastasis. J Clin Invest. 132:e1437622022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Hu C, Lin H, Li G, Xia R, Zhang X, Su D, Li Z, Zhou Q and Chen R: circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. J Exp Clin Cancer Res. 41:712022. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y and Shen H: Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 16:1482017. View Article : Google Scholar : PubMed/NCBI | |
Gou Z, Li J, Liu J and Yang N: The hidden messengers: Cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol. 12:13783022024. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Sun J, Yang ZF, Zhou C, Zhou PY, Guan RY, Sun BY, Wang ZT, Zhou J, Fan J, et al: Cancer-associated fibroblast-derived CXCL11 modulates hepatocellular carcinoma cell migration and tumor metastasis through the circUBAP2/miR-4756/IFIT1/3 axis. Cell Death Dis. 12:2602021. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Zhang J and Bao C: Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 21:9332021. View Article : Google Scholar : PubMed/NCBI | |
Sleeboom JJF, van Tienderen GS, Schenke-Layland K, van der Laan LJW, Khalil AA and Verstegen MMA: The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci Transl Med. 16:eadg38402024. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zheng Z, Xie Y, Zhong Q, Shangguan W, Zhang Y, Zhu D and Xie W: Circular RNA circPPP6R3 upregulates CD44 to promote the progression of clear cell renal cell carcinoma via sponging miR-1238-3p. Cell Death Dis. 13:222021. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Qin H, Li Y, Zhang Y, Zhuang X, Liu L, Lu K, Li L, Deng X, Liu F, et al: FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J Cell Physiol. 234:19895–19910. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, Li X and Sun Z: Roles of circRNAs in the tumour microenvironment. Mol Cancer. 19:142020. View Article : Google Scholar : PubMed/NCBI | |
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L and Dufour A: Matrix metalloproteinases: From molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol Rev. 74:712–768. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Liu Y, Chen S, Zong Z, Du Y, Sheng X and Zhao Y: circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI | |
Luo YH, Zhu XZ, Huang KW, Zhang Q, Fan YX, Yan PW and Wen J: Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. Biomed Pharmacother. 96:892–898. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bakir B, Chiarella AM, Pitarresi JR and Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30:764–776. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhao M, Peng L, Chen J, Xing P, Gao P, Chen L, Qiao X, Wang Z, Di J, et al: WFDC3 inhibits tumor metastasis by promoting the ERβ-mediated transcriptional repression of TGFBR1 in colorectal cancer. Cell Death Dis. 14:4252023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Song X, Chen X, Wang Q, Zheng X, Wu C and Jiang J: Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 Expression. Int J Biol Sci. 15:1091–1103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wu N and Wang J: Hsa-circ_0058106 induces EMT and metastasis in laryngeal cancer via sponging miR-153 and inducing Twist1 nuclear translocation. Cell Oncol. 44:1373–1386. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rao D, Yu C, Sheng J, Lv E and Huang W: The emerging roles of circFOXO3 in cancer. Front Cell Dev Biol. 9:6594172021. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Zhou L, Zhang C and Xu J: Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett. 468:88–101. 2020. View Article : Google Scholar : PubMed/NCBI | |
Neumann DP, Goodall GJ and Gregory PA: Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin Cell Dev Biol. 75:50–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zhan Y, Jiang W, Liu H and Wei S: Long noncoding RNAs and circular RNAs in the metabolic reprogramming of lung cancer: Functions, mechanisms, and clinical potential. Oxid Med Cell Longev. 2022:48023382022. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI | |
Cai ZR, Hu Y, Liao K, Li H, Chen DL and Ju HQ: Circular RNAs: Emerging regulators of glucose metabolism in cancer. Cancer Lett. 552:2159782023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019. View Article : Google Scholar : PubMed/NCBI | |
Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin G, Hu Z, Dai J and Shen H: A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 7:2783–2791. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, Zhang X, Zhang C, Zhang P, Gong S, et al: CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer. 20:1142021. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Peng J and Yuan Y: CircRNA OXCT1 promotes the malignant progression and glutamine metabolism of non-small cell lung cancer by absorbing miR-516b-5p and upregulating SLC1A5. Cell Cycle. 22:1182–1195. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Lin J, Wang F, Chen X, Zhang Y, Hu Z and Jin X: Circular RNA-regulated autophagy is involved in cancer progression. Front Cell Dev Biol. 10:9619832022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, Tang Y, He Y, Liao Q, Li X, et al: The influence of circular RNAs on autophagy and disease progression. Autophagy. 18:240–253. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song H, Zhao Z, Ma L, Zhao W, Hu Y and Song Y: Novel exosomal circEGFR facilitates triple negative breast cancer autophagy via promoting TFEB nuclear trafficking and modulating miR-224-5p/ATG13/ULK1 feedback loop. Oncogene. 43:821–836. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhang Y, Chu F, Xu L and Wu H: Circ_0032821 acts as an oncogene in cell proliferation, metastasis and autophagy in human gastric cancer cells in vitro and in vivo through activating MEK1/ERK1/2 signaling pathway. Cancer Cell Int. 20:742020. View Article : Google Scholar : PubMed/NCBI | |
He Z, Cai K, Zeng Z, Lei S, Cao W and Li X: Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression. Cell Death Dis. 13:2332022. View Article : Google Scholar : PubMed/NCBI | |
Li XX, Xiao L, Chung HK, Ma XX, Liu X, Song JL, Jin CZ, Rao JN, Gorospe M and Wang JY: Interaction between HuR and circPABPN1 modulates autophagy in the intestinal epithelium by altering ATG16L1 translation. Mol Cell Biol. 40:e00492–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Palanisamy K, Tsai T, Yu T, Sun K, Yu S, Lin F, Wang I and Li C: RNA-binding protein, human antigen R regulates hypoxia-induced autophagy by targeting ATG7/ATG16L1 expressions and autophagosome formation. J Cell Physiol. 234:7448–7458. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Ding R, Sun Y, Huo ST, He A, Wen C, Chen H, Du WW, Lai W and Wang H: Circular RNA in tumor metastasis. Mol Ther Nucleic Acids. 23:1243–1257. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Ding X, Fang X, Xu J, Chen Y, Qian Y, Zhang J, Yu D, Zhang X, Ma X, et al: Circ6834 suppresses non-small cell lung cancer progression by destabilizing ANHAK and regulating miR-873-5p/TXNIP axis. Mol Cancer. 23:1282024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang X, Shi L, Liu B, Sheng Z, Chang S, Cai X and Shan G: A mammalian conserved circular RNA CircLARP1B regulates hepatocellular carcinoma metastasis and lipid metabolism. Adv Sci (Weinh). 11:e23059022024. View Article : Google Scholar : PubMed/NCBI | |
Liu YY, Zhang YY, Ran LY, Huang B, Ren JW, Ma Q, Pan XJ, Yang FF, Liang C, Wang XL, et al: A novel protein FNDC3B-267aa encoded by circ0003692 inhibits gastric cancer metastasis via promoting proteasomal degradation of c-Myc. J Transl Med. 22:5072024. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Jia Y, Wang J, Chen X, Han J, Zhen S, Yin S, Lv W, Yu F, Wang J, et al: circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis. Mol Cancer. 23:472024. View Article : Google Scholar : PubMed/NCBI | |
Mao S, Wu D, Cheng X and Wu J: Circ_0007432 promotes non-small cell lung cancer progression and macrophage M2 polarization through SRSF1/KLF12 axis. iScience. 27:1098612024. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang S, Jin M, Zuo Y, Wang J, Niu Y, Zhou Q, Chen J, Tang X, Tang W, et al: Hypoxic exosomal circPLEKHM1-mediated crosstalk between tumor cells and macrophages drives lung cancer metastasis. Adv Sci (Weinh). 11:e23098572024. View Article : Google Scholar : PubMed/NCBI | |
Feng PF, Zhu LX, Sheng N, Li XS, Liu PG and Chen XF: CircXRN2 accelerates colorectal cancer progression through regulating miR-149-5p/MACC1 axis and EMT. Sci Rep. 14:24482024. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Wu H, Luo J, Qiu Y, Li Y, Xu Y, Liu L, Liu X and Zhang Q: CircTBC1D22A inhibits the progression of colorectal cancer through autophagy regulated via miR-1825/ATG14 axis. iScience. 27:1091682024. View Article : Google Scholar : PubMed/NCBI | |
Long F, Tian B, Li L, Ma M, Chen Z, Tan G, Yin N, Zhong C, Yu B, Guo Y, et al: CircPOFUT1 fosters colorectal cancer metastasis and chemoresistance via decoying miR-653-5p/E2F7/WDR66 axis and stabilizing BMI1. iScience. 27:1087292024. View Article : Google Scholar : PubMed/NCBI | |
Du W, Quan X, Wang C, Song Q, Mou J and Pei D: Regulation of tumor metastasis and CD8+ T cells infiltration by circRNF216/miR-576-5p/ZC3H12C axis in colorectal cancer. Cell Mol Biol Lett. 29:192024. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Peng M, Liu Q, Peng Q, Oyang L, Li S, Xu X, Shen M, Wang J, Li H, et al: Circular RNA hsa_circ_0000467 promotes colorectal cancer progression by promoting eIF4A3-mediated c-Myc translation. Mol Cancer. 23:1512024. View Article : Google Scholar : PubMed/NCBI | |
Fei D, Wang F, Wang Y, Chen J, Chen S, Fan L, Yang L, Ren Q, Duangmano S, Du F, et al: Circular RNA ACVR2A promotes the progression of hepatocellular carcinoma through mir-511-5p targeting PI3K-Akt signaling pathway. Mol Cancer. 23:1592024. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Han G, Chen Z, Zhang Y, Xu B, Xu C, Gao W and Wu J: CircDCAF8 promotes the progression of hepatocellular carcinoma through miR-217/NAP1L1 Axis, and induces angiogenesis and regorafenib resistance via exosome-mediated transfer. J Transl Med. 22:5172024. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Su S, Wang P, Li J, Chen C, Xin H, Gong Y, Wang H, Ye X, Mao L, et al: Tumor-associated macrophage-induced circMRCKα encodes a peptide to promote glycolysis and progression in hepatocellular carcinoma. Cancer Lett. 591:2168722024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zou R, Li D, Gao X and Lu X: Exosomal circSTRBP from cancer cells facilitates gastric cancer progression via regulating miR-1294/miR-593-3p/E2F2 axis. J Cell Mol Med. 28:e182172024. View Article : Google Scholar : PubMed/NCBI | |
Deng C, Huo M, Chu H, Zhuang X, Deng G, Li W, Wei H, Zeng L, He Y, Liu H, et al: Exosome circATP8A1 induces macrophage M2 polarization by regulating the miR-1-3p/STAT6 axis to promote gastric cancer progression. Mol Cancer. 23:492024. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Lu J, Zhu H, Wu F, Mo Y, Xie L, Song C, Liu L, Xie X, Li Y, et al: A novel axis of circKIF4A-miR-637-STAT3 promotes brain metastasis in triple-negative breast cancer. Cancer Lett. 581:2165082024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Tan Y, Yuan J, Tang H, Zhang H, Tang Y, Xie Y, Wu L, Xie J, Xiao X, et al: circLIFR-007 reduces liver metastasis via promoting hnRNPA1 nuclear export and YAP phosphorylation in breast cancer. Cancer Lett. 592:2169072024. View Article : Google Scholar : PubMed/NCBI | |
Zhuang M, Zhang X, Ji J, Zhang H, Shen L, Zhu Y and Liu X: Exosomal circ-0100519 promotes breast cancer progression via inducing M2 macrophage polarisation by USP7/NRF2 axis. Clin Transl Med. 14:e17632024. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Sun Z, Liu X, Luo J, Liang X, Wang H, Zhou J, Yang C, Wang T and Li J: 127aa encoded by circSpdyA promotes FA synthesis and NK cell repression in breast cancers. Cell Death Differ. 32:416–433. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Zeng X, Zhu Y, Leng M, Zhang Z, Wang Q, Liu X, Zeng S, Xiao Y, Hu C, et al: CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis. Mol Cancer. 23:42024. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang Y, Liu Y, Wang C, Zhang D, Wei L, et al: A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway. Mol Cancer. 23:342024. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Hu J, Liu Z, Deng H, Xiao J, Yi Z, He Y, Xiao Z, Huang J, Liang H, et al: Hsa_circ_0000520 suppresses vasculogenic mimicry formation and metastasis in bladder cancer through Lin28a/PTEN/PI3K signaling. Cell Mol Biol Lett. 29:1182024. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Cheng B, Singh S, Tao Y, Xie Z, Qin F, Shi X, Xu J, Hu C, Tan W, et al: A protein-encoding CCDC7 circular RNA inhibits the progression of prostate cancer by up-regulating FLRT3. NPJ Precis Oncol. 8:112024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Qiu H, Dong Q, Yu H, Piao C, Li Z, Sun Y and Cui X: Androgen-targeted hsa_circ_0085121 encodes a novel protein and improves the development of prostate cancer through facilitating the activity of PI3K/Akt/mTOR pathway and enhancing AR-V7 alternative splicing. Cell Death Dis. 15:8482024. View Article : Google Scholar : PubMed/NCBI | |
Lei K, Liang R, Liang J, Lu N, Huang J, Xu K, Tan B, Wang K, Liang Y, Wang W, et al: CircPDE5A-encoded novel regulator of the PI3K/AKT pathway inhibits esophageal squamous cell carcinoma progression by promoting USP14-mediated de-ubiquitination of PIK3IP1. J Exp Clin Cancer Res. 43:1242024. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Ma Z, Yang J, Qu T, Xia Y, Xu Y, Zhou M and Liu W: CircPHGDH downregulation decreases papillary thyroid cancer progression through miR-122-5p/PKM2 axis. BMC Cancer. 24:5112024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao H, Yang J and Wang B: IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma. Sci Rep. 14:30142024. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Luo Y, Lin Y, Fang Z, Zheng H, An M, Xie Q, Wu Z, Yu C, Yang J, et al: Endosomal trafficking bypassed by the RAB5B-CD109 interplay promotes axonogenesis in KRAS-mutant pancreatic cancer. Adv Sci. 11:24050922024. View Article : Google Scholar | |
Henry NL and Hayes DF: Cancer biomarkers. Mol Oncol. 6:140–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI | |
Yin WB, Yan MG, Fang X, Guo JJ, Xiong W and Zhang RP: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 487:363–368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, Liu G, Li X, Yang Y and Chen R: CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 19:132020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Wang C, Song H, Xu Y and Ji G: RNA-Seq profiling of circular RNAs in human colorectal cancer liver metastasis and the potential biomarkers. Mol Cancer. 18:82019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J and Du G: The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: PRMT5 Circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce Epithelial-mesenchymal transition. Clin Cancer Res. 24:6319–6330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X and Li X: Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 37:1772018. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Conn VM and Conn SJ: Past, present, and future strategies for detecting and quantifying circular RNA variants. FEBS J. Feb 11–2025.doi: 10.1111/febs.70012 (Epub ahead of print). View Article : Google Scholar | |
Arnberg AC, Van Ommen G-JB, Grivell LA, Van Bruggen EFJ and Borst P: Some yeast mitochondrial RNAs are circular. Cell. 19:313–319. 1980. View Article : Google Scholar : PubMed/NCBI | |
van der Veen R, Arnberg AC, van der Horst G, Bonen L, Tabak HF and Grivell LA: Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell. 44:225–234. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI | |
Szabo L and Salzman J: Detecting circular RNAs: Bioinformatic and experimental challenges. Nat Rev Genet. 17:679–692. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mi Z, Zhongqiang C, Caiyun J, Yanan L, Jianhua W and Liang L: Circular RNA detection methods: A minireview. Talanta. 238:1230662022. View Article : Google Scholar : PubMed/NCBI | |
Burnett WV: Northern blotting of RNA denatured in glyoxal without buffer recirculation. Biotechniques. 22:668–671. 1997. View Article : Google Scholar : PubMed/NCBI | |
Schneider T, Schreiner S, Preußer C, Bindereif A and Rossbach O: Northern Blot Analysis of Circular RNAs. Circular RNAs. vol. 1724. Dieterich C and Papantonis A: Springer; New York, New York, NY: pp. 119–133. 2018, View Article : Google Scholar : PubMed/NCBI | |
Panda A and Gorospe M: Detection and analysis of circular RNAs by RT-PCR. Bio Protoc. 8:e27752018. View Article : Google Scholar : PubMed/NCBI | |
Vromman M, Yigit N, Verniers K, Lefever S, Vandesompele J and Volders P: Validation of circular RNAs Using RT-qPCR after effective removal of linear RNAs by Ribonuclease R. Curr Protoc. 1:e1812021. View Article : Google Scholar : PubMed/NCBI | |
Dahl M, Daugaard I, Andersen MS, Hansen TB, Grønbæk K, Kjems J and Kristensen LS: Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab Invest. 98:1657–1669. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, Jian M, Ding Z, Dai X, Bao F and Liu A: Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep. 38:BSR201811702018. View Article : Google Scholar : PubMed/NCBI | |
Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, Yu R, Xiao B and Guo J: Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med. 96:85–96. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen DF, Zhang LJ, Tan K and Jing Q: Application of droplet digital PCR in quantitative detection of the cell-free circulating circRNAs. Biotechnol Biotechnol Equip. 32:116–123. 2018. View Article : Google Scholar | |
Maheshwari Y, Selvaraj V, Hajeri S and Yokomi R: Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR. PLoS One. 12:e01847512017. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Venø MT, Damgaard CK and Kjems J: Comparison of circular RNA prediction tools. Nucleic Acids Res. 44:e58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liang M, Yao W, Shi B, Zhu X, Cai R, Yu Z, Guo W, Wang H, Dong Z, Lin M, et al: Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p. Cell Death Dis. 12:6392021. View Article : Google Scholar : PubMed/NCBI | |
Zirkel A and Papantonis A: Detecting circular RNAs by RNA Fluorescence in situ Hybridization. Circular RNAs. vol. 1724. Dieterich C and Papantonis A: Springer; New York, New York, NY: pp. 69–75. 2018, View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Guo N, Gao K, Su F, Wang F and Li Z: Direct recognition and sensitive detection of circular RNA with ligation-based PCR. Org Biomol Chem. 18:3269–3273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang X, Liu M, Xu F, Zhang Q, Zhang Y, Weng X, Liu S, Du Y and Zhou X: Direct detection of circRNA in real samples using reverse transcription-rolling circle amplification. Anal Chim Acta. 1101:169–175. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Xiang Y, Duan C, Liu Y, Li C and Li G: Lighting Up CircRNA using a linear DNA NAnostructure. Anal Chem. 92:12394–12399. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Zeng Z, Sun R, Zhang X, Cheng Z, Chen C and Zhu Q: Specific and sensitive detection of CircRNA based on netlike hybridization chain reaction. Biosens Bioelectron. 192:1135082021. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Duan C, Zheng J, Li D, Li C, Wang Z, Gao T and Xiang Y: Development of a two-in-one integrated assay for the analysis of circRNA-microRNA interactions. Biosens Bioelectron. 178:1130322021. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Gao K, Liang Y, Su F, Wang F and Li Z: Ultrasensitive detection of circular RNA by accurate recognition of the specific junction site using stem-loop primer induced double exponential amplification. Talanta. 217:1210212020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Han B, Wang Y, Lin N, Zhou Z, Zhang Y, Bai Y, Shen L, Shen Y, Zhang Y and Yao H: Fast and sensitive multivalent spatial pattern-recognition for circular RNA detection. Nat Commun. 15:109002024. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Nie Z, Huang Z and Zhang X: CircPCBL: Identification of plant CircRNAs with a CNN-BiGRU-GLT model. Plants (Basel). 12:16522023.PubMed/NCBI | |
Song P, Zhang P, Qin K, Su F, Gao K, Liu X and Li Z: CRISPR/Cas13a induced exponential amplification for highly sensitive and specific detection of circular RNA. Talanta. 246:1235212022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wu Y, Wen X, Zhu J, Bai X, Qi Y and Yang H: Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure. Opt Quantum Electron. 52:2382020. View Article : Google Scholar : PubMed/NCBI | |
Zhai WL, Li DW, Qu LL, Fossey JS and Long YT: Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale. 4:137–142. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li N, Shen F, Cai Z, Pan W, Yin Y, Deng X, Zhang X, Machuki JO, Yu Y, Yang D, et al: Target-induced Core-satellite nanostructure assembly strategy for Dual-Signal-On fluorescence imaging and raman quantification of intracellular MicroRNA guided photothermal therapy. Small. 16:e20055112020. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J and Yang H: Asymmetric Core-Shell gold nanoparticles and controllable assemblies for SERS ratiometric detection of MicroRNA. Angew Chem Int Ed. 60:12560–12568. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Shi H, Meng X, Su Y, Wang H and He Y: Dual-amplification Strategy-based SERS chip for sensitive and reproducible detection of DNA methyltransferase activity in human serum. Anal Chem. 91:3597–3603. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guerrini L, Garcia-Rico E, O'Loghlen A, Giannini V and Alvarez-Puebla RA: Surface-enhanced raman scattering (SERS) Spectroscopy for sensing and characterization of exosomes in cancer diagnosis. Cancers (Basel). 13:21792021. View Article : Google Scholar : PubMed/NCBI | |
Muskan M, Abeysinghe P, Cecchin R, Branscome H, Morris KV and Kashanchi F: Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol Ther J Am Soc Gene Ther. 32:2939–2949. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Xu Y, Solek NC, Chen J, Gong F, Varley AJ, Golubovic A, Pan A, Dong S, Zheng G and Li B: Tumor-tailored ionizable lipid nanoparticles Facilitate IL-12 circular RNA delivery for enhanced lung cancer immunotherapy. Adv Mater. 36:e24003072024. View Article : Google Scholar : PubMed/NCBI |