1
|
Gilaberte Y, Prieto-Torres L, Pastushenko
I and Juarranz Á: Chapter 1-Anatomy and Function of the Skin.
Nanoscience in Dermatology. Hamblin MR, Avci P and Prow TW:
Academic Press; Boston: pp. 1–14. 2016, View Article : Google Scholar
|
2
|
Kanitakis J: Anatomy, histology and
immunohistochemistry of normal human skin. Eur J Dermatol.
12:390–401. 2002.PubMed/NCBI
|
3
|
Huang J, Heng S, Zhang W, Liu Y, Xia T, Ji
C and Zhang LJ: Dermal extracellular matrix molecules in skin
development, homeostasis, wound regeneration and diseases. Semin
Cell Dev Biol. 128:137–144. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bayat A, McGrouther DA and Ferguson MWJ:
Skin scarring. BMJ. 326:88–92. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bock O, Schmid-Ott G, Malewski P and
Mrowietz U: Quality of life of patients with keloid and
hypertrophic scarring. Arch Dermatol Res. 297:433–438. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee HJ and Jang YJ: Recent understandings
of biology, prophylaxis and treatment strategies for hypertrophic
scars and keloids. Int J Mol Sci. 19:7112018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tracy LE, Minasian RA and Caterson EJ:
Extracellular matrix and dermal fibroblast function in the healing
wound. Adv Wound Care (New Rochelle). 5:119–136. 2014. View Article : Google Scholar
|
8
|
Hynes RO and Naba A: Overview of the
matrisome-an inventory of extracellular matrix constituents and
functions. Cold Spring Harb Perspect Biol. 4:a0049032012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Pfisterer K, Shaw LE, Symmank D and
Weninger W: The extracellular matrix in skin inflammation and
infection. Front Cell Dev Biol. 9:6824142021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Potekaev NN, Borzykh OB, Medvedev GV,
Pushkin DV, Petrova MM, Petrov AV, Dmitrenko DV, Karpova EI, Demina
OM and Shnayder NA: The role of extracellular matrix in skin wound
healing. J Clin Med. 10:59472021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Watt FM and Fujiwara H: Cell-extracellular
matrix interactions in normal and diseased skin. Cold Spring Harb
Perspect Biol. 3:a0051242011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lambert SA, Jolma A, Campitelli LF, Das
PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT:
The human transcription factors. Cell. 17:650–665. 2018. View Article : Google Scholar
|
13
|
Tomaru Y, Hasegawa R, Suzuki T, Sato T,
Kubosaki A, Suzuki M, Kawaji H, Forrest AR, Hayashizaki Y; FANTOM
Consortium, ; et al: A transient disruption of fibroblastic
transcriptional regulatory network facilitates
trans-differentiation. Nucleic Acids Res. 42:8905–8913. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Burkitt Wright EMM, Spencer HL, Daly SB,
Manson FDC, Zeef LAH, Urquhart J, Zoppi N, Bonshek R, Tosounidis I,
Mohan M, et al: Mutations in PRDM5 in brittle cornea syndrome
identify a pathway regulating extracellular matrix development and
maintenance. Am J Hum Genet. 88:767–777. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Burkitt Wright EMM, Porter LF, Spencer HL,
Clayton-Smith J, Au L, Munier FL, Smithson S, Suri M, Rohrbach M,
Manson FD and Black GC: Brittle cornea syndrome: Recognition,
molecular diagnosis and management. Orphanet J Rare Dis. 8:682013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Rohrbach M, Spencer HL, Porter LF,
Burkitt-Wright EM, Bürer C, Janecke A, Bakshi M, Sillence D,
Al-Hussain H, Baumgartner M, et al: ZNF469 frequently mutated in
the brittle cornea syndrome (BCS) is a single exon gene possibly
regulating the expression of several extracellular matrix
components. Mol Genet Metab. 109:289–295. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Moore P, Wolf A and Sathyamoorthy M: An
eye into the aorta: The role of extracellular matrix regulatory
genes ZNF469 and PRDM5, from their previous association with
brittle cornea syndrome to their novel association with aortic and
arterial aneurysmal diseases. Int J Mol Sci. 25:58482024.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Stanton CM, Findlay AS, Drake C, Mustafa
MZ, Gautier P, McKie L, Jackson IJ and Vitart V: A mouse model of
brittle cornea syndrome caused by mutation in Zfp469. Dis Model
Mech. 14:dmm0491752021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bao J, Yu X, Ping X, Shentu X and Zou J:
Znf469 plays a critical role in regulating synthesis of ECM: A
zebrafish model of brittle cornea syndrome. Invest Ophthalmol Vis
Sci. 64:292023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin P, Zhang G, Peng R, Zhao M and Li H:
Increased expression of bonecartilage-associated genes and core
transcription factors in keloids by RNA sequencing. Exp Dermatol.
31:1586–1596. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Salamito M, Gillet B, Syx D, Vaganay E,
Malbouyres M, Cerutti C, Tissot N, Exbrayat-Héritier C, Perez P,
Jones C, et al: NRF2 shortage in human skin fibroblasts
dysregulates matrisome gene expression and affects collagen
fibrillogenesis. J Invest Dermatol. 143:386–397.e12. 2023.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ariyachet C, Nokkeaw A, Boonkaew B and
Tangkijvanich P: ZNF469 is a profibrotic regulator of extracellular
matrix in hepatic stellate cells. J Cell Biochem. 125:e305782024.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ariyachet C, Chuaypen N, Kaewsapsak P,
Chantaravisoot N, Jindatip D, Potikanond S and Tangkijvanich P:
MicroRNA-223 suppresses human hepatic stellate cell activation
partly via regulating the actin cytoskeleton and alleviates
fibrosis in organoid models of liver injury. Int J Mol Sci.
23:93802022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wiederschain D, Wee S, Chen L, Loo A, Yang
G, Huang A, Chen Y, Caponigro G, Yao YM, Lengauer C, et al:
Single-vector inducible lentiviral RNAi system for oncology target
validation. Cell Cycle. 8:498–504. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Guaita-Cespedes M, Grillo-Risco R, Hidalgo
MR, Fernández-Veledo S, Burks DJ, de la Iglesia-Vayá M, Galán A and
Garcia-Garcia F: Deciphering the sex bias in housekeeping gene
expression in adipose tissue: A comprehensive meta-analysis of
transcriptomic studies. Biol Sex Differ. 14:202023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pijuan J, Barceló C, Moreno DF, Maiques O,
Sisó P, Marti RM, Macià A and Panosa A: In vitro cell Migration,
invasion, and adhesion assays: From cell imaging to data analysis.
Front Cell Dev Biol. 7:1072019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ngo P, Ramalingam P, Phillips JA and
Furuta GT: Collagen gel contraction assay. Methods Mol Biol.
341:103–109. 2006.PubMed/NCBI
|
29
|
Nokkeaw A, Nokkeaw A and Tangkijvanich P:
Long non-coding RNA H19 promotes proliferation in hepatocellular
carcinoma cells via H19miR-107CDK6 axis. Oncol Res. 31:989–1005.
2023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu J, Del Duca E, Espino M, Gontzes A,
Cueto I, Zhang N, Estrada YD, Pavel AB, Krueger JG and
Guttman-Yassky E: RNA sequencing keloid transcriptome associates
keloids with Th2, Th1, Th17Th22, and JAK3-skewing. Front Immunol.
11:5977412020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Almier N, Leibowitz K, Gower AC, To S,
Keller MR, Connizzo BK, Roh DS, Alani RM and Collard M: Targeting
the epigenome reduces keloid fibroblast cell proliferation,
migration, and invasion. J Invest Dermatol. 45:411–422.e7. 2025.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ham S, Harrison C, de Kretser D, Wallace
EM, Southwick G and Temple-Smith P: Potential treatment of keloid
pathogenesis with follistatin 288 by blocking the activin molecular
pathway. Exp Dermatol. 30:402–408. 2021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Deng CC, Zhang LX, Xu XY, Zhu DH, Cheng Q,
Ma S, Rong Z and Yang B: Risk single-nucleotide
polymorphism-mediated enhancer-promoter interaction drives keloids
through long noncoding RNA down expressed in keloids. Br J
Dermatol. 188:84–93. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kang M, Ko UH, Oh EJ, Kim HM, Chung HY and
Shin JH: Tension-sensitive HOX gene expression in fibroblasts for
differential scar formation. J Transl Med. 23:1682025. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gu JJ, Deng CC, Feng QL, Liu J, Zhu DH,
Cheng Q, Rong Z and Yang B: Relief of extracellular matrix
deposition repression by downregulation of IRF1-Mediated TWEAKFn14
signaling in keloids. J Invest Dermatol. 143:1208–1219.e6. 2023.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Deng CC, Hu YF, Zhu DH, Cheng Q, Gu JJ,
Feng QL, Zhang LX, Xu YP, Wang D, Rong Z and Yang B: Single-cell
RNA-seq reveals fibroblast heterogeneity and increased mesenchymal
fibroblasts in human fibrotic skin diseases. Nat Commun.
12:37092021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Angerer P, Haghverdi L, Büttner M, Theis
FJ, Marr C and Buettner F: Destiny: Diffusion maps for large-scale
single-cell data in R. Bioinformatics. 32:1241–1243. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Haghverdi L, Büttner M, Wolf FA, Buettner
F and Theis FJ: Diffusion pseudotime robustly reconstructs lineage
branching. Nat Methods. 13:845–848. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Feru J, Delobbe E, Ramont L, Brassart B,
Terryn C, Dupont-Deshorgue A, Garbar C, Monboisse JC, Maquart FX
and Brassart-Pasco S: Aging decreases collagen IV expression in
vivo in the dermo-epidermal junction and in vitro in dermal
fibroblasts: Possible involvement of TGF-β1. Eur J Dermatol.
26:350–360. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lago J and Puzzi MB: The effect of aging
in primary human dermal fibroblasts. PLoS One. 14:e02191652019.
View Article : Google Scholar : PubMed/NCBI
|
41
|
McCarty TY and Kearney CJ: Human dermal
fibroblast senescence in response to single and recurring oxidative
stress. Front Aging. 6:15049772025. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tentaku A, Kurisu S, Sejima K, Nagao T,
Takahashi A and Yonemura S: Proximal deposition of collagen IV by
fibroblasts contributes to basement membrane formation by colon
epithelial cells in vitro. FEBS J. 289:7466–7485. 2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Landry NM, Rattan SG and Dixon IMC: An
improved method of maintaining primary murine cardiac fibroblasts
in Two-dimensional cell culture. Sci Rep. 9:128892019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Limandjaja GC, Niessen FB, Scheper RJ and
Gibbs S: Hypertrophic scars and keloids: Overview of the evidence
and practical guide for differentiating between these abnormal
scars. Exp Dermatol. 30:146–161. 2021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Shim J, Oh SJ, Yeo E, Park JH, Bae JH, Kim
SH, Lee D and Lee JH: Integrated analysis of Single-cell and
spatial transcriptomics in keloids: Highlights on fibrovascular
interactions in keloid pathogenesis. J Invest Dermatol.
142:2128–2139.e11. 2022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang X, Wu X and Li D: The Communication
from immune cells to the fibroblasts in keloids: Implications for
immunotherapy. Int J Mol Sci. 24:154752023. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wu T, Jin Y, Chen F, Xuan X, Cao J, Liang
Y, Wang Y, Zhan J, Zhao M and Huang C: Identification and
characterization of bonecartilage-associated signatures in common
fibrotic skin diseases. Front Genet. 14:11217282023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Nauroy P, Guiraud A, Chlasta J, Malbouyres
M, Gillet B, Hughes S, Lambert E and Ruggiero F: Gene profile of
zebrafish fin regeneration offers clues to kinetics, organization
and biomechanics of basement membrane. Matrix Biol. 75–76. 82–101.
2019.
|
49
|
Haydont V, Neiveyans V, Zucchi H, Fortunel
NO and Asselineau D: Genome-wide profiling of adult human papillary
and reticular fibroblasts identifies ACAN, Col XI α1, and PSG1 as
general biomarkers of dermis ageing, and KANK4 as an exemplary
effector of papillary fibroblast ageing, related to contractility.
Mech Ageing Dev. 177:157–181. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Łuszczyński K, Soszyńska M, Komorowski M,
Lewandowska P, Zdanowski R, Sobiepanek A, Brytan M, Malejczyk J,
Lutyńska A and Ścieżyńska A: Markers of dermal fibroblast
subpopulations for viable cell isolation via cell sorting: A
comprehensive review. Cells. 13:12062024. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gomes RN, Manuel F and Nascimento DS: The
bright side of fibroblasts: Molecular signature and regenerative
cues in major organs. NPJ Regen Med. 6:432021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Henderson NC, Rieder F and Wynn TA:
Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Kendall RT and Feghali-Bostwick CA:
Fibroblasts in fibrosis: Novel roles and mediators. Front
Pharmacol. 5:1232014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Abu A, Frydman M, Marek D and Pras E, Nir
U, Reznik-Wolf H and Pras E: Deleterious mutations in the
Zinc-Finger 469 gene cause brittle cornea syndrome. Am J Hum Genet.
82:1217–1222. 2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Steinhauser S, Estoppey D, Buehler DP,
Xiong Y, Pizzato N, Rietsch A, Wu F, Leroy N, Wunderlin T, Claerr
I, et al: The transcription factor ZNF469 regulates collagen
production in liver fibrosis. JCI Insight. 10:e1822322025.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Wang L, Tang L, Zhou L, Lai Y, Li H, Wang
X and Liu X: Identification of CGNL1 as a diagnostic marker in
fibroblasts of diabetic foot ulcers: Insights from single cell RNA
sequencing and bulk sequencing data. Int J Immunopathol Pharmacol.
38:39463202412659452024. View Article : Google Scholar : PubMed/NCBI
|
57
|
Solé-Boldo L, Raddatz G, Schütz S, Mallm
JP, Rippe K, Lonsdorf AS, Rodríguez-Paredes M and Lyko F:
Single-cell transcriptomes of the human skin reveal age-related
loss of fibroblast priming. Commun Biol. 3:1882020. View Article : Google Scholar : PubMed/NCBI
|
58
|
Yang F, Luo P, Ding H, Zhang C and Zhu Z:
Collagen type V a2 (COL5A2) is decreased in steroid-induced
necrosis of the femoral head. Am J Transl Res. 10:2469–2479.
2018.PubMed/NCBI
|
59
|
Acke FR, Malfait F, Vanakker OM, Steyaert
W, De Leeneer K, Mortier G, Dhooge I, De Paepe A, De Leenheer EM
and Coucke PJ: Novel pathogenic COL11A1COL11A2 variants in Stickler
syndrome detected by targeted NGS and exome sequencing. Mol Genet
Metab. 13:230–235. 2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Posey KL, Coustry F and Hecht JT:
Cartilage oligomeric matrix protein: COMPopathies and beyond.
Matrix Biol. 71–72. 161–173. 2018.
|
61
|
Galli GG, Honnens de Lichtenberg K,
Carrara M, Hans W, Wuelling M, Mentz B, Multhaupt HA, Fog CK,
Jensen KT, Rappsilber J, et al: Prdm5 regulates collagen gene
transcription by association with RNA polymerase II in developing
bone. PLoS Genet. 8:e10027112012. View Article : Google Scholar : PubMed/NCBI
|
62
|
Kim SW: Management of keloid scars:
Noninvasive and invasive treatments. Arch Plast Surg. 48:149–157.
2021. View Article : Google Scholar : PubMed/NCBI
|
63
|
Gouarderes S, Ober C, Doumard L, Dandurand
J, Vicendo P, Fourquaux I, Golberg A, Samouillan V and Gibot L:
Pulsed electric fields induce extracellular matrix remodeling
through matrix metalloproteinases activation and decreased collagen
production. J Invest Dermatol. 142:1326–1337.e9. 2022. View Article : Google Scholar : PubMed/NCBI
|
64
|
Abraham D, Lescoat A and Stratton R:
Emerging diagnostic and therapeutic challenges for skin fibrosis in
systemic sclerosis. Mol Aspects Med. 96:1012522024. View Article : Google Scholar : PubMed/NCBI
|
65
|
Almadori A and Butler PE: Scarring and
skin fibrosis reversal with regenerative surgery and stem cell
therapy. Cells. 13:4432024. View Article : Google Scholar : PubMed/NCBI
|
66
|
Lim DZJ, Chun YY, Tan FNSY, Monteiro AY,
Cheng HM, Lee JY, Tan Y, Tan TTY and Tey HL: Small interfering RNA
microneedle patches versus silicone sheets in reducing
postoperative scars: A randomized single-blinded intraindividually
controlled clinical trial. Br J Dermatol. 192:19–26. 2024.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Lee K, Min D, Choi Y, Kim J, Yoon S, Jang
J, Park S, Tanaka M, Cho YW, Koo HJ, et al: Study and evaluation of
the potential of lipid nanocarriers for transdermal delivery of
siRNA. Biotechnol J. 15:e20000792020. View Article : Google Scholar : PubMed/NCBI
|