Recent advances in the antileukemic mechanisms of fucoidan based on epigenetic regulation (Review)
- Authors:
- Guangyan Yu
- Qiuling Xu
- Ran An
-
Affiliations: Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: September 2, 2025 https://doi.org/10.3892/mmr.2025.13671
- Article Number: 306
This article is mentioned in:
Abstract
Zheng Z, Wang L, Cheng S, Wang Y and Zhao W: Autophagy and Leukemia. Adv Exp Med Biol. 1207:601–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Wong MPM and Ng RK: Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci. 20:45762019. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Yu H, Jin R, Wu X and Chen H: Genetic and epigenetic targeting therapy for pediatric acute lymphoblastic leukemia. Cells. 10:33492021. View Article : Google Scholar : PubMed/NCBI | |
Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL and Dovat S: Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul. 75:1006652020. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Rau R and Goodell MA: DNMT3A in haematological malignancies. Nat Rev Cancer. 15:152–165. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, et al: DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 363:2424–2433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, Fulton R, Schmidt H, Kalicki-Veizer J, O'Laughlin M, et al: Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 25:1153–1158. 2011. View Article : Google Scholar : PubMed/NCBI | |
Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R and Lichter P: Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 14:765–780. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Hatzi K and Shaknovich R: Mechanisms of epigenetic deregulation in lymphoid neoplasms. Blood. 121:4271–4279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ghazimoradi MH, Karimpour-Fard N and Babashah S: The promising role of Non-coding RNAs as biomarkers and therapeutic targets for leukemia. Genes (Basel). 14:1312023. View Article : Google Scholar : PubMed/NCBI | |
Li T, Hong J, Ma Y, Yang B, Wang G, Wang S, Chen J and Chi X: Regulatory mechanism of long noncoding RNA in the occurrence and development of leukemia: A review. Sheng Wu Gong Cheng Xue Bao. 37:3933–3944. 2021.(In Chinese). PubMed/NCBI | |
Cruz-Miranda GM, Hidalgo-Miranda A, Bárcenas-López DA, Núñez-Enríquez JC, Ramírez-Bello J, Mejía-Aranguré JM and Jiménez-Morales S: Long Non-coding RNA and acute leukemia. Int J Mol Sci. 20:7352019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Shen YQ: Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal. 125:1115022025. View Article : Google Scholar : PubMed/NCBI | |
Alimohammadi M, Abolghasemi H, Cho WC, Reiter RJ, Mafi A, Aghagolzadeh M and Hushmandi K: Interplay between LncRNAs and autophagy-related pathways in leukemia: Mechanisms and clinical implications. Med Oncol. 42:1542025. View Article : Google Scholar : PubMed/NCBI | |
Ma D, Wei J, Chen S, Wang H, Ning L, Luo SH, Liu CL, Song G and Yao Q: Fucoidan inhibits the progression of hepatocellular carcinoma via causing lncRNA LINC00261 overexpression. Front Oncol. 11:6539022021. View Article : Google Scholar : PubMed/NCBI | |
Yan MD, Lin HY and Hwang PA: The anti-tumor activity of brown seaweed Oligo-fucoidan via lncRNA expression modulation in HepG2 cells. Cytotechnology. 71:363–374. 2019. View Article : Google Scholar : PubMed/NCBI | |
Conchie J and Percival EGV: Fucoidin. Part II. The hydrolysis of a methylated Fucoidin prepared from fucus vesiculosus. J Chem Soc. 827–832. 1950. View Article : Google Scholar | |
Li Y, Zhao W, Wang L, Chen Y, Zhang H, Wang T, Yang X, Xing F, Yan J and Fang X: Protective effects of fucoidan against hydrogen peroxide-induced oxidative damage in porcine intestinal epithelial cells. Animals (Basel). 9:11082019. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Liu Z, Sun X, Tao M, Xiao X, Yu G and Wang X: The effect of fucoidan on cellular oxidative stress and the CatD-Bax signaling axis in MN9D cells damaged by 1-methyl-4-phenypyridinium. Front Aging Neurosci. 10:4292019. View Article : Google Scholar : PubMed/NCBI | |
Yoo HJ, You DJ and Lee KW: Characterization and immunomodulatory effects of high molecular weight fucoidan fraction from the Sporophyll of Undaria pinnatifida in cyclophosphamide-induced immunosuppressed mice. Mar Drugs. 17:4472019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xing M, Cao Q, Ji A, Liang H and Song S: Biological activities of fucoidan, the factors mediating its therapeutic effects: A review of recent studies. Mar Drugs. 17:1832019. View Article : Google Scholar : PubMed/NCBI | |
Luthuli S, Wu S, Cheng Y, Zheng X, Wu M and Tong H: Therapeutic effects of fucoidan: A review on recent studies. Mar Drugs. 17:4872019. View Article : Google Scholar : PubMed/NCBI | |
Kim EA, Lee SH, Ko CI, Cha SH, Kang MC, Kang SM, Ko SC, Lee WW, Ko JY, Lee JH, et al: Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydr Polym. 102:185–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shiau JP, Chuang YT, Cheng YB, Tang JY, Hou MF, Yen CY and Chang HW: Impacts of Oxidative Stress and PI3K/AKT/mTOR on metabolism and the future direction of investigating fucoidan-modulated metabolism. Antioxidants (Basel). 11:9112022. View Article : Google Scholar : PubMed/NCBI | |
Jin JO, Song MG, Kim YN, Park JI and Kwak JY: The mechanism of fucoidan-induced apoptosis in leukemic cells: Involvement of ERK1/2, JNK, glutathione, and nitric oxide. Mol Carcinog. 49:771–782. 2010.PubMed/NCBI | |
Park HS, Hwang HJ, Kim GY, Cha HJ, Kim WJ, Kim ND, Yoo YH and Choi YH: Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bc-2 family. Mar Drugs. 11:2347–2364. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maruyama H, Tamauchi H, Iizuka M and Nakano T: The role of NK cells in anti-tumor activity of dietary fucoidan from Undaria pinnatifda sporophylls (Mekabu). Planta Med. 72:1415–1417. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liao CH, Lai IC, Kuo HC, Chuang SE, Lee HL, Whang-Peng J, Yao CJ and Lai GM: Epigenetic modification and differentiation induction of malignant glioma cells by oligo-fucoidan. Mar Drugs. 17:5252019. View Article : Google Scholar : PubMed/NCBI | |
Yan MD, Yao CJ, Chow JM, Chang CL, Hwang PA, Chuang SE, Whang-Peng J and Lai GM: Fucoidan elevates MicroRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Mar Drugs. 13:6099–6116. 2015. View Article : Google Scholar : PubMed/NCBI | |
El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M and Chibi F: Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res. 549:1093582025. View Article : Google Scholar : PubMed/NCBI | |
Zhao A, Zhou H, Yang J, Li M and Niu T: Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther. 8:712023. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Wen Y, Jin R and Chen H: Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr. 10:9758192022. View Article : Google Scholar : PubMed/NCBI | |
Mehdipour P, Santoro F and Minucci S: Epigenetic alterations in acute myeloid leukemias. FEBS J. 282:1786–1800. 2015. View Article : Google Scholar : PubMed/NCBI | |
Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A and Zarghami N: Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother. 106:1668–1677. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Rodriguez N, Combita AL and Zabaleta J: Epigenetics in hematological malignancies. Methods Mol Biol. 1856:87–101. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei A and Wu H: Mammalian DNA methylome dynamics: Mechanisms, functions and new frontiers. Development. 149:dev1826832022. View Article : Google Scholar : PubMed/NCBI | |
Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M and Gowher H: Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer. 3:zcab0452021. View Article : Google Scholar : PubMed/NCBI | |
Kalinkova L, Sevcikova A, Stevurkova V, Fridrichova I and Ciernikova S: Targeting DNA methylation in leukemia, myelodysplastic syndrome, and lymphoma: A potential diagnostic, prognostic, and therapeutic Tool. Int J Mol Sci. 24:6332022. View Article : Google Scholar : PubMed/NCBI | |
Rahmani M, Talebi M, Hagh MF, Feizi AAH and Solali S: Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother. 97:1493–1500. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou L and Yin X: Clinical applications of abnormal DNA methylation in chronic myeloid leukemia. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 49:122–127. 2024.(In English, Chinese). PubMed/NCBI | |
Palomo L, Malinverni R, Cabezón M, Xicoy B, Arnan M, Coll R, Pomares H, García O, Fuster-Tormo F, Grau J, et al: DNA methylation profile in chronic myelomonocytic leukemia associates with distinct clinical, biological and genetic features. Epigenetics. 13:8–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhu H and Wu H: PTEN in regulating hematopoiesis and leukemogenesis. Cold Spring Harb Perspect Med. 10:a0362442020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Liu H, Xu ZF, Liu XR, Wang Y, Rao Q, Wang JX and Wang M: Promoter methylation status of PTEN gene and the effect of induced demethylation in leukemia cell lines. Zhonghua Xue Ye Xue Za Zhi. 29:289–292. 2008.(In Chinese). PubMed/NCBI | |
Zhang Y, Chen D, Shi R, Wang X, Ji X, Han K, Tian Y and Gao Y: Chemical exposure, leukemia related DNA methylation changes and childhood acute leukemia. Zhonghua Yu Fang Yi Xue Za Zhi. 49:800–809. 2015.(In Chinese). PubMed/NCBI | |
Takeuchi A, Nishioka C, Ikezoe T, Yang J and Yokoyama A: STAT5A regulates DNMT3A in CD34(+)/CD38(−) AML cells. Leuk Res. 39:897–905. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bera R, Chiu MC, Huang YJ, Liang DC, Lee YS and Shih LY: Genetic and epigenetic perturbations by DNMT3A-R882 mutants impaired apoptosis through augmentation of PRDX2 in myeloid leukemia cells. Neoplasia. 20:1106–1120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sanchez R and Mackenzie SA: Integrative network analysis of differentially methylated and expressed genes for biomarker identification in leukemia. Sci Rep. 10:21232020. View Article : Google Scholar : PubMed/NCBI | |
Shen N, Yan F, Pang J, Wu LC, Al-Kali A, Litzow MR and Liu S: A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis. Oncotarget. 5:5494–5509. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen N, Yan F, Pang J, Zhao N, Gangat N, Wu L, Bode AM, Al-Kali A, Litzow MR and Liu S: Inactivation of receptor tyrosine kinasesreverts aberrant DNA methylation in acute myeloid leukemia. Clin Cancer Res. 23:6254–6266. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang GH, Lu Y, Ji BQ, Ren JC, Sun P, Ding S, Liao X, Liao K, Liu J, Cao J, et al: Do mutations in DNMT3A/3B affect global DNA hypomethylation among benzene-exposed workers in Southeast China?: Effects of mutations in DNMT3A/3B on global DNA hypomethylation. Environ Mol Mutagen. 58:678–687. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scourzic L, Couronné L, Pedersen MT, Della Valle V, Diop M, Mylonas E, Calvo J, Mouly E, Lopez CK, Martin N, et al: DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia. 30:1388–1398. 2016. View Article : Google Scholar : PubMed/NCBI | |
Giacopelli B, Wang M, Cleary A, Wu YZ, Schultz AR, Schmutz M, Blachly JS, Eisfeld AK, Mundy-Bosse B, Vosberg S, et al: DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Res. 31:747–761. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Xie J, Wang Y, Sheng M, Sun Y, Chen P, Rong S, Yin D, Wang Y, Zhu P, et al: STING mediates increased self-renewal and lineage skewing in DNMT3A-mutated hematopoietic stem/progenitor cells. Leukemia. 39:929–941. 2025. View Article : Google Scholar : PubMed/NCBI | |
Mansouri L, Wierzbinska JA, Plass C and Rosenquist R: Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Semin Cancer Biol. 51:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Birch NW and Shilatifard A: The role of histone modifications in leukemogenesis. J Biosci. 45:62020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ning Q, Shi J, Chen Y, Jiang M, Gao L, Huang W, Jing Y, Huang S, Liu A, et al: A novel epigenetic AML1-ETO/THAP10/miR-383 mini-circuitry contributes to t(8;21) leukaemogenesis. EMBO Mol Med. 9:933–949. 2017. View Article : Google Scholar : PubMed/NCBI | |
Palande KK, Beekman R, van der Meeren LE, Beverloo HB, Valk PJ and Touw IP: The antioxidant protein peroxiredoxin 4 is epigenetically down regulated in acute promyelocytic leukemia. PLoS One. 6:e163402011. View Article : Google Scholar : PubMed/NCBI | |
Chen ZH, Zhu M, Yang J, Liang H, He J, He S, Wang P, Kang X, McNutt MA, Yin Y, et al: PTEN interacts with histone H1 and controls chromatin condensation. Cell Rep. 8:2003–2014. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lund K, Adams PD and Copland M: EZH2 in normal and malignant hematopoiesis. Leukemia. 28:44–49. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, Strikoudis A, King B, et al: Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 514:513–517. 2014. View Article : Google Scholar : PubMed/NCBI | |
Psvv C, Joseph A, Ebenezer P, Sankar V, Suravajhala R, Rao RSP and Suravajhala P: An introduction to non-coding RNAs. Prog Mol Biol Transl Sci. 214:1–17. 2025. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Liang F, Zhang F, Zhao H, Gong Q and Gao N: Recent advances in the reciprocal regulation of m6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther. 259:1086712024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X and Fu L: Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol. 12:512019. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H, Sasaki Y, Ishida T, Shen L, Garcia-Manero G, et al: Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer. 92:1165–1172. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa D, Manabe A, Kubota T, Kawasaki H, Hirose I, Ohtsuka Y, Tsuruta T, Ebihara Y, Goto Y, Zhao XY, et al: Methylation status of the p15 and p16 genes in paediatric myelodysplastic syndrome and juvenile myelomonocytic leukaemia. Br J Haematol. 128:805–812. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schwarzer A, Emmrich S, Schmidt F, Beck D, Ng M, Reimer C, Adams FF, Grasedieck S, Witte D, Käbler S, et al: The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 8:2182017. View Article : Google Scholar : PubMed/NCBI | |
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M and Pourghadamyari H: MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 234:8465–8486. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wallace JA and O'Connell RM: MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood. 130:1290–1301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Yao L, Li P, Wu G and Lv X: Long non-coding RNA MIR17HG sponges microRNA-21 to upregulate PTEN and regulate homoharringtonine-based chemoresistance of acute myeloid leukemia cells. Oncol Lett. 23:242022. View Article : Google Scholar : PubMed/NCBI | |
Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P and Tassone P: miR-29s: A family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 6:12837–12861. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Lu W, Yu Y, Zhai Y, Guo H, Yang S, Zhao C, Zhang Y, Liu J, Liu Y, et al: miR-29c&b2 encourage extramedullary infiltration resulting in the poor prognosis of acute myeloid leukemia. Oncogene. 40:3434–3448. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schmid VK, Khadour A, Ahmed N, Brandl C, Nitschke L, Rajewsky K, Jumaa H and Hobeika E: B-cell antigen receptor expression and phosphatidylinositol 3-kinase signaling regulate genesis and maintenance of mouse chronic lymphocytic leukemia. Haematologica. 107:1796–1814. 2022. View Article : Google Scholar : PubMed/NCBI | |
Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B and Majidinia M: Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci. 285:1199842021. View Article : Google Scholar : PubMed/NCBI | |
Yadav P, Bandyopadhayaya S, Ford BM and Mandal C: Interplay between DNA Methyltransferase 1 and microRNAs during tumorigenesis. Curr Drug Targets. 22:1129–1148. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang TJ, Zhang LC, Xu ZJ and Zhou JD: Expression and prognosis analysis of DNMT family in acute myeloid leukemia. Aging (Albany NY). 12:14677–14690. 2020. View Article : Google Scholar : PubMed/NCBI | |
Carraway HE, Malkaram SA, Cen Y, Shatnawi A, Fan J, Ali HEA, Abd Elmageed ZY, Buttolph T, Denvir J, Primerano DA and Fandy TE: Activation of SIRT6 by DNA hypomethylating agents and clinical consequences on combination therapy in leukemia. Sci Rep. 10:103252020. View Article : Google Scholar : PubMed/NCBI | |
Richter WF, Shah RN and Ruthenburg AJ: Non-canonical H3K79me2-dependent pathways promote the survival of MLL-rearranged leukemia. Elife. 10:e649602021. View Article : Google Scholar : PubMed/NCBI | |
Huang FL, Yu SJ and Li CL: Role of autophagy and apoptosis in acute lymphoblastic leukemia. Cancer Control. 28:107327482110191382021. View Article : Google Scholar : PubMed/NCBI | |
Boustani H, Khodadi E and Shahidi M: Autophagy in hematological malignancies: Molecular aspects in leukemia and lymphoma. Lab Med. 52:16–23. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational modifications in autophagy: Biological functions and therapeutic targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI | |
Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q and Ying M: The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy. 17:2665–2679. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Xue M, Sun T, Yang J, Pei Z and Qin K: Fucoidan as an autophagy regulator: Mechanisms and therapeutic potentials for cancer and other diseases. Nutr Cancer. 74:1568–1579. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L and Wu N: Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym. 324:1215552024. View Article : Google Scholar : PubMed/NCBI | |
Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, Makeen HA, Alhazmi HA, El Omari N, Zaid Y, Wong RS, et al: Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies. Chem Biol Interact. 392:1109072024. View Article : Google Scholar : PubMed/NCBI | |
Ow SH, Chua PJ and Bay BH: Epigenetic regulation of peroxiredoxins: Implications in the pathogenesis of cancer. Exp Biol Med (Maywood). 242:140–147. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nepstad I, Hatfield KJ, Grønningsæter IS and Reikvam H: The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci. 21:29072020. View Article : Google Scholar : PubMed/NCBI | |
Bernardo VS, Torres FF, de Paula CP, da Silva JPMO, de Almeida EA, da Cunha AF and da Silva DGH: Potential cytoprotective and regulatory effects of ergothioneine on gene expression of proteins involved in erythroid adaptation mechanisms and redox pathways in K562 Cells. Genes (Basel). 13:23682022. View Article : Google Scholar : PubMed/NCBI | |
van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A and Pijnenborg JMA: Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar Drugs. 17:322019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen X and Lu C: The interplay between DNA and histone methylation: Molecular mechanisms and disease implications. EMBO Rep. 22:e518032021. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Li H, Yu Q, Xiao W and Wang DO: LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 41:1002022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wu W and Claret FX: Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics. 12:187–197. 2017. View Article : Google Scholar : PubMed/NCBI | |
Afgar A, Ramezani Zadeh Kermani M, Pabarja A, Afgar AR, Kavyani B, Arezoomand H, Zanganeh S, Sanaei MJ, Sattarzadeh Bardsiri M and Vahidi R: 6-Gingerol modulates miRNAs and PODXL gene expression via methyltransferase enzymes in NB4 cells: An in silico and in vitro study. Sci Rep. 14:183562024. View Article : Google Scholar : PubMed/NCBI | |
Chen YL, Zhang ZX, Shou LH and Di JY: Regulation of DNA methylation and tumor suppression gene expression by miR-29b in leukemia patients and related mechanisms. Eur Rev Med Pharmacol Sci. 22:158–165. 2018.PubMed/NCBI | |
Yang Y, Hassan SHA, Awasthi MK, Gajendran B, Sharma M, Ji M-K and Salama El-S: The recent progress on the bioactive compounds from algal biomass for human health applications. Food Bioscience. 51:1022672023. View Article : Google Scholar | |
Geng H, Chen M, Guo C, Wang W and Chen D: Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr Res. 538:1090712024. View Article : Google Scholar : PubMed/NCBI | |
Mustafa S, Pawar JS and Ghosh I: Fucoidan induces ROS-dependent epigenetic modulation in cervical cancer HeLa cell. Int J Biol Macromol. 181:180–192. 2021. View Article : Google Scholar : PubMed/NCBI | |
DesJarlais R and Tummino PJ: Role of histone-modifying enzymes and their complexes in regulation of chromatin biology. Biochemistry. 55:1584–1599. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Lee H, Yi SJ and Kim K: Gene regulation by histone-modifying enzymes under hypoxic conditions: A focus on histone methylation and acetylation. Exp Mol Med. 54:878–889. 2022. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Cheng Q and He J: HDAC inhibitors: Promising agents for leukemia treatment. Biochem Biophys Res Commun. 680:61–72. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu YW, Chao MW, Tu HJ, Chen LC, Hsu KC, Liou JP, Yang CR, Yen SC, HuangFu WC and Pan SL: A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis. 10:392021. View Article : Google Scholar : PubMed/NCBI | |
Kanna R, Choudhary G, Ramachandra N, Steidl U, Verma A and Shastri A: STAT3 inhibition as a therapeutic strategy for leukemia. Leuk Lymphoma. 59:2068–2074. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tan N, Luo H, Li W, Ling G, Wei Y, Wang W and Wang Y: The dual function of autophagy in doxorubicin-induced cardiotoxicity: Mechanism and natural products. Semin Cancer Biol. 109:83–90. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Sun Z, Lin N, Lu W, Huang X, Weng J, Sun S, Zhang C, Yang Q, Zhou G, et al: Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomed Pharmacother. 130:1105342020. View Article : Google Scholar : PubMed/NCBI | |
Kato T, Shimono Y, Hasegawa M, Jijiwa M, Enomoto A, Asai N, Murakumo Y and Takahashi M: Characterization of the HDAC1 complex that regulates the sensitivity of cancer cells to oxidative stress. Cancer Res. 69:3597–3604. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yan H and Bu P: Non-coding RNA in cancer. Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, et al: Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer. 19:572020. View Article : Google Scholar : PubMed/NCBI | |
Peschansky VJ and Wahlestedt C: Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 9:3–12. 2014. View Article : Google Scholar : PubMed/NCBI | |
Farooqi AA, Fayyaz S, Poltronieri P, Calin G and Mallardo M: Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol. 83:197–207. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chuang YT, Yen CY, Tang JY, Wu KC, Chang FR, Tsai YH, Chien TM and Chang HW: Marine anticancer drugs in modulating miRNAs and antioxidant signaling. Chem Biol Interact. 399:1111422024. View Article : Google Scholar : PubMed/NCBI | |
Pradhan B, Patra S, Nayak R, Behera C, Dash SR, Nayak S and Sahu BB: Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int J Biol Macromol. 164:4263–4278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gueven N, Spring KJ, Holmes S, Ahuja K, Eri R, Park AY and Fitton JH: Micro RNA expression after ingestion of Fucoidan; A clinical study. Mar Drugs. 18:1432020. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Zhou B, Ross SA and Zempleni J: Nutrition, microRNAs, and Human Health. Adv Nutr. 8:105–112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Park HB, Yadav D, Hwang J, An EK, Eom HY, Kim SJ, Kwak M, Lee PC and Jin JO: Comparison of human peripheral blood dendritic cell activation by four fucoidans. Int J Biol Macromol. 174:477–484. 2021. View Article : Google Scholar : PubMed/NCBI | |
Riether C, Schürch CM and Ochsenbein AF: Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 22:187–198. 2015. View Article : Google Scholar : PubMed/NCBI | |
El-Far YM, Khodir AE, Emarah ZA, Ebrahim MA and Al-Gayyar MMH: Fucoidan ameliorates hepatocellular carcinoma induced in rats: Effect on miR143 and inflammation. Nutr Cancer. 73:1498–1510. 2021. View Article : Google Scholar : PubMed/NCBI | |
Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Karpiniec SS and Dickinson JL: Fucoidan suppresses the growth of human acute promyelocytic leukemia cells in vitro and in vivo. J Cell Physiol. 231:688–697. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sanjeewa KKA, Lee JS, Kim WS and Jeon YJ: The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym. 177:451–459. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang Y, Chen L, Bai L and Guan S: Co-immobilization of natural marine polysaccharides and bioactive peptides on ZE21B magnesium alloy to enhance hemocompatibility and cytocompatibility. Int J Biol Macromol. 272:1327472024. View Article : Google Scholar : PubMed/NCBI |