1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ramezankhani R, Solhi R, Es HA, Vosough M
and Hassan M: Novel molecular targets in gastric adenocarcinoma.
Pharmacol Ther. 220:1077142021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ganapathy-Kanniappan S and Geschwind JF:
Tumor glycolysis as a target for cancer therapy: Progress and
prospects. Mol Cancer. 12:1522013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ngo DC, Ververis K, Tortorella SM and
Karagiannis TC: Introduction to the molecular basis of cancer
metabolism and the Warburg effect. Mol Biol Rep. 42:819–823. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Liberti MV and Locasale JW: The Warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Huber V, Camisaschi C, Berzi A, Ferro S,
Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C and
Rivoltini L: Cancer acidity: An ultimate frontier of tumor immune
escape and a novel target of immunomodulation. Semin Cancer Biol.
43:74–89. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dhup S, Dadhich RK, Porporato PE and
Sonveaux P: Multiple biological activities of lactic acid in
cancer: Influences on tumor growth, angiogenesis and metastasis.
Curr Pharm Des. 18:1319–1330. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ren Z, Rajani C and Jia W: The distinctive
serum metabolomes of gastric, esophageal and colorectal cancers.
Cancers (Basel). 13:7202021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chan AW, Gill RS, Schiller D and Sawyer
MB: Potential role of metabolomics in diagnosis and surveillance of
gastric cancer. World J Gastroenterol. 20:12874–12882. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Han S, Yang S, Cai Z, Pan D, Li Z, Huang
Z, Zhang P, Zhu H, Lei L and Wang W: Anti-Warburg effect of
rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel
Ther. 9:2695–2703. 2015.PubMed/NCBI
|
12
|
Wang YY, Zhou YQ, Xie JX, Zhang X, Wang
SC, Li Q, Hu LP, Jiang SH, Yi SQ, Xu J, et al: MAOA suppresses the
growth of gastric cancer by interacting with NDRG1 and regulating
the Warburg effect through the PI3K/AKT/mTOR pathway. Cell Oncol
(Dordr). 46:1429–1444. 2023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Holdorf MM, Owen HA, Lieber SR, Yuan L,
Adams N, Dabney-Smith C and Makaroff CA: Arabidopsis ETHE1 encodes
a sulfur dioxygenase that is essential for embryo and endosperm
development. Plant Physiol. 160:226–236. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang SY, Liao L, Hu SY, Deng L, Andriani
L, Zhang TM, Zhang YL, Ma XY, Zhang FL, Liu YY and Li DQ: ETHE1
accelerates triple-negative breast cancer metastasis by activating
GCN2/eIF2α/ATF4 signaling. Int J Mol Sci. 24:145662023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Witherspoon M, Sandu D, Lu C, Wang K,
Edwards R, Yeung A, Gelincik O, Manfredi G, Gross S, Kopelovich L
and Lipkin S: ETHE1 overexpression promotes SIRT1 and PGC1α
mediated aerobic glycolysis, oxidative phosphorylation,
mitochondrial biogenesis and colorectal cancer. Oncotarget.
10:4004–4017. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu S, Wang S, Zhao Y, Li J, Shu C, Li Y,
Li J, Lu B, Xu Z, Ran Y and Hao Y: Depleted uranium causes renal
mitochondrial dysfunction through the ETHE1/Nrf2 pathway. Chem Biol
Interact. 372:1103562023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sahebekhtiari N, Fernandez-Guerra P, Nochi
Z, Carlsen J, Bross P and Palmfeldt J: Deficiency of the
mitochondrial sulfide regulator ETHE1 disturbs cell growth,
glutathione level and causes proteome alterations outside
mitochondria. Biochim Biophys Acta Mol Basis Dis. 1865:126–135.
2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Oue N, Hamai Y, Mitani Y, Matsumura S,
Oshimo Y, Aung PP, Kuraoka K, Nakayama H and Yasui W: Gene
expression profile of gastric carcinoma: Identification of genes
and tags potentially involved in invasion, metastasis, and
carcinogenesis by serial analysis of gene expression. Cancer Res.
64:2397–2405. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yasui W, Oue N, Ito R, Kuraoka K and
Nakayama H: Search for new biomarkers of gastric cancer through
serial analysis of gene expression and its clinical implications.
Cancer Sci. 95:385–392. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ru B, Wong CN, Tong Y, Zhong JY, Zhong
SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I, et al: TISIDB: An
integrated repository portal for tumor-immune system interactions.
Bioinformatics. 35:4200–4202. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Guidelines for Endpoints in Animal Study
Proposals, . Animal Research Advisory Committee NIH (ed.);
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan
K, Cheng H, Jin K, Ni Q, Yu X and Liu C: The role of necroptosis in
cancer biology and therapy. Mol Cancer. 18:1002019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Higashitsuji H, Higashitsuji H, Nagao T,
Nonoguchi K, Fujii S, Itoh K and Fujita J: A novel protein
overexpressed in hepatoma accelerates export of NF-kappa B from the
nucleus and inhibits p53-dependent apoptosis. Cancer Cell.
2:335–346. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sathe G, Deepha S, Gayathri N, Nagappa M,
Sankaran BP, Taly AB, Khanna T, Pandey A and Govindaraj P:
Ethylmalonic encephalopathy ETHE1 p. D165H mutation alters the
mitochondrial function in human skeletal muscle proteome.
Mitochondrion. 58:64–71. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Watson MJ, Vignali PDA, Mullett SJ,
Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV,
Rittenhouse NL, DePeaux K, Whetstone RD, et al: Metabolic support
of tumour-infiltrating regulatory T cells by lactic acid. Nature.
591:645–651. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Brand A, Singer K, Koehl GE, Kolitzus M,
Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et
al: LDHA-Associated lactic acid production blunts tumor
immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sonveaux P, Végran F, Schroeder T, Wergin
MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C,
Jordan BF, et al: Targeting lactate-fueled respiration selectively
kills hypoxic tumor cells in mice. J Clin Invest. 118:3930–3942.
2008.PubMed/NCBI
|
30
|
Yıldırım C: Galectin-9, a pro-survival
factor inducing immunosuppression, leukemic cell transformation and
expansion. Mol Biol Rep. 51:5712024. View Article : Google Scholar : PubMed/NCBI
|
31
|
Murakami K and Ganguly S: The Nectin
family ligands, PVRL2 and PVR, in cancer immunology and
immunotherapy. Front Immunol. 15:14417302024. View Article : Google Scholar : PubMed/NCBI
|
32
|
Saraiva M, Vieira P and O'Garra A: Biology
and therapeutic potential of interleukin-10. J Exp Med.
217:e201904182020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gou Q, Dong C, Xu H, Khan B, Jin J, Liu Q,
Shi J and Hou Y: PD-L1 degradation pathway and immunotherapy for
cancer. Cell Death Dis. 11:9552020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cheong JE and Sun L: Targeting the
IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy-challenges and
opportunities. Trends Pharmacol Sci. 39:307–325. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fisher DT, Appenheimer MM and Evans SS:
The two faces of IL-6 in the tumor microenvironment. Semin Immunol.
26:38–47. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang L, Zhang A, Zhu X, Tian X, Guo J, He
Q, Zhu L, Yuan S, Zhao C, Zhang X and Xu J: CD160 signaling is
essential for CD8+ T cell memory formation via upregulation of
4-1BB. J Immunol. 211:1367–1375. 2023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Le Bouteiller P, Tabiasco J, Polgar B,
Kozma N, Giustiniani J, Siewiera J, Berrebi A, Aguerre-Girr M,
Bensussan A and Jabrane-Ferrat N: CD160: A unique activating NK
cell receptor. Immunol Lett. 138:93–96. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang J, Liang Y, Xue A, Xiao J, Zhao X,
Cao S, Li P, Dong J, Li Y, Xu Z and Yang L: Intratumoral CXCL13(+)
CD160(+) CD8(+) T cells promote the formation of tertiary lymphoid
structures to enhance the efficacy of immunotherapy in advanced
gastric cancer. J Immunother Cancer. 12:e0096032024. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hu B, Tian X and Li Y, Liu Y, Yang T, Han
Z, An J, Kong L and Li Y: Epithelial-mesenchymal transition may be
involved in the immune evasion of circulating gastric tumor cells
via downregulation of ULBP1. Cancer Med. 9:2686–2697. 2020.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wu CP, Jiang JT, Tan M, Zhu YB, Ji M, Xu
KF, Zhao JM, Zhang GB and Zhang X: Relationship between
co-stimulatory molecule B7-H3 expression and gastric carcinoma
histology and prognosis. World J Gastroenterol. 12:457–459. 2006.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Guo J, Xiao JJ, Zhang X and Fan KX: CD40
expression and its prognostic significance in human gastric
carcinoma. Med Oncol. 32:632015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Vonderheide RH: CD40 agonist antibodies in
cancer immunotherapy. Annu Rev Med. 71:47–58. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Balkwill FR: The chemokine system and
cancer. J Pathol. 226:148–157. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang J, Hu W, Wu X, Wang K, Yu J, Luo B,
Luo G, Wang W, Wang H, Li J and Wen J: CXCR1 promotes malignant
behavior of gastric cancer cells in vitro and in vivo in AKT and
ERK1/2 phosphorylation. Int J Oncol. 48:2184–2196. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Han J, Fu R, Chen C, Cheng X, Guo T,
Huangfu L, Li X, Du H, Xing X and Ji J: CXCL16 promotes gastric
cancer tumorigenesis via ADAM10-Dependent CXCL16/CXCR6 axis and
activates akt and mapk signaling pathways. Int J Biol Sci.
17:2841–2852. 2021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Li C, Jiang P, Wei S, Xu X and Wang J:
Regulatory T cells in tumor microenvironment: New mechanisms,
potential therapeutic strategies and future prospects. Mol Cancer.
19:1162020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Qu Y, Wang X, Bai S, Niu L, Zhao G, Yao Y,
Li B and Li H: The effects of TNF-α/TNFR2 in regulatory T cells on
the microenvironment and progression of gastric cancer. Int J
Cancer. 150:1373–1391. 2022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang Q and Sioud M: Tumor-associated
macrophage subsets: Shaping polarization and targeting. Int J Mol
Sci. 24:74932023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wu Y, Hao Y, Zhuang Q, Ma X and Shi C:
AKR1B10 regulates M2 macrophage polarization to promote the
malignant phenotype of gastric cancer. Biosci Rep.
43:BSR202220072023. View Article : Google Scholar : PubMed/NCBI
|