
Progress in the development of cancer vaccines for lung cancer utilizing dendritic cells (Review)
- Authors:
- Hui Hu
- Wen-Jun Chen
- Chuang Sun
- Jun-Ping Xie
-
Affiliations: Department of Respiratory and Critical Care, The Second Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Oncology, PLA Navy Anqing Hospital, Anqing, Anhui 246004, P.R. China, Department of Respiratory and Critical Care, Xinyu People's Hospital, Xinyu, Jiangxi 338099, P.R. China - Published online on: April 14, 2025 https://doi.org/10.3892/ol.2025.15044
- Article Number: 298
-
Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Laversanne M, Sung H, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Oliveira G and Wu CJ: Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer. 23:295–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qian D, Li J, Huang M, Cui Q, Liu X and Sun K: Dendritic cell vaccines in breast cancer: Immune modulation and immunotherapy. Biomed Pharmacother. 162:1146852023. View Article : Google Scholar : PubMed/NCBI | |
Moore ZS, Seward JF and Lane JM: Smallpox. Lancet. 367:425–435. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang Y, Chen X, Zhang F, Chen J, Zhu H, Li J, Chen Z, Wang A, Xiao Y, et al: DC vaccine enhances CAR-T cell antitumor activity by overcoming T cell exhaustion and promoting T cell infiltration in solid tumors. Clin Transl Oncol. 25:2972–2982. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sadeghzadeh M, Bornehdeli S, Mohahammadrezakhani H, Abolghasemi M, Poursaei E, Asadi M, Zafari V, Aghebati-Maleki L and Shanehbandi D: Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci. 254:1175802020. View Article : Google Scholar : PubMed/NCBI | |
Shang N, Figini M, Shangguan J, Wang B, Sun C, Pan L, Ma Q and Zhang Z: Dendritic cells based immunotherapy. Am J Cancer Res. 7:2091–2102. 2017.PubMed/NCBI | |
Ding J, Zheng Y, Wang G, Zheng J and Chai D: The performance and perspectives of dendritic cell vaccines modified by immune checkpoint inhibitors or stimulants. Biochim Biophys Acta Rev Cancer. 1877:1887632022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei X: Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar : PubMed/NCBI | |
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M and Reis e Sousa C: Dendritic cells revisited. Annu Rev Immunol. 39:131–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Santos PM and Butterfield LH: Dendritic cell-based cancer vaccines. J Immunol. 200:443–449. 2018. View Article : Google Scholar : PubMed/NCBI | |
Satpathy AT, Murphy KM and Kc W: Transcription factor networks in dendritic cell development. Semin Immunol. 23:388–397. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tailor P, Tamura T and Ozato K: IRF family proteins and type I interferon induction in dendritic cells. Cell Res. 16:134–140. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Itano AA and Jenkins MK: Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol. 4:733–739. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen L: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 4:336–347. 2004. View Article : Google Scholar : PubMed/NCBI | |
Trombetta ES and Mellman I: Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 23:975–1028. 2005. View Article : Google Scholar : PubMed/NCBI | |
Leibundgut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J and Reis e Sousa C: Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 8:630–638. 2007. View Article : Google Scholar : PubMed/NCBI | |
Macri C, Pang ES, Patton T and O'Keeffe M: Dendritic cell subsets. Semin Cell Dev Biol. 84:11–21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, Wang D, Li N, Cheng JT, Lyv YN, et al: Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 13:1072020. View Article : Google Scholar : PubMed/NCBI | |
Comi M, Avancini D, Santoni De Sio F, Villa M, Uyeda MJ, Floris M, Tomasoni D, Bulfone A, Roncarolo MG and Gregori S: Coexpression of CD163 and CD141 identifies human circulating IL-10-producing dendritic cells (DC-10). Cell Mol Immunol. 17:95–107. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo C, You Z, Shi H, Sun Y, Du X, Palacios G, Guy C, Yuan S, Chapman NM, Lim SA, et al: SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity. Nature. 620:200–208. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kvedaraite E and Ginhoux F: Human dendritic cells in cancer. Sci Immunol. 7:eabm94092022. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Pucella JN, Jang G, Alcántara-Hernández M, Upadhaya S, Adams NM, Khodadadi-Jamayran A, Lau CM, Stoeckius M, Hao S, et al: Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity. 55:405–422.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bruni D, Chazal M, Sinigaglia L, Chauveau L, Schwartz O, Desprès P and Jouvenet N: Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Sci Signal. 8:ra252015. View Article : Google Scholar : PubMed/NCBI | |
Collin M and Bigley V: Human dendritic cell subsets: An update. Immunology. 154:3–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Datta J, Terhune JH, Lowenfeld L, Cintolo JA, Xu S, Roses RE and Czerniecki BJ: Optimizing dendritic cell-based approaches for cancer immunotherapy. Yale J Biol Med. 87:491–518. 2014.PubMed/NCBI | |
Young JW and Steinman RM: Accessory cell requirements for the mixed-leukocyte reaction and polyclonal mitogens, as studied with a new technique for enriching blood dendritic cells. Cell Immunol. 111:167–182. 1988. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Zhu T, Hou B and Huang H: An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol Ther. 31:2376–2390. 2023. View Article : Google Scholar : PubMed/NCBI | |
Van Den Bergh JMJ, Smits ELJM, Berneman ZN, Hutten TJA, De Reu H, Van Tendeloo VFI, Dolstra H, Lion E and Hobo W: Monocyte-derived dendritic cells with silenced PD-1 ligands and transpresenting interleukin-15 stimulate strong tumor-reactive T-cell expansion. Cancer Immunol Res. 5:710–715. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lutz MB, Ali S, Audiger C, Autenrieth SE, Berod L, Bigley V, Cyran L, Dalod M, Dörrie J, Dudziak D, et al: Guidelines for mouse and human DC generation. Eur J Immunol. 53:e22498162023. View Article : Google Scholar : PubMed/NCBI | |
Bonasio R and Von Andrian UH: Generation, migration and function of circulating dendritic cells. Curr Opin Immunol. 18:503–511. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Sun H, Cao W, Song Y and Jiang Z: Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 11:32022. View Article : Google Scholar : PubMed/NCBI | |
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF and Berneman ZN: Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 67:731–753. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boudreau JE, Bonehill A, Thielemans K and Wan Y: Engineering dendritic cells to enhance cancer immunotherapy. Mol Ther. 19:841–853. 2011. View Article : Google Scholar : PubMed/NCBI | |
Janssens S, Pulendran B and Lambrecht BN: Emerging functions of the unfolded protein response in immunity. Nat Immunol. 15:910–919. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xia D, Moyana T and Xiang J: Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res. 16:241–259. 2006. View Article : Google Scholar : PubMed/NCBI | |
Allahyari M and Mohit E: Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother. 12:806–828. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rosendahl Huber S, Van Beek J, de Jonge J, Luytjes W and van Baarle D: T cell responses to viral infections-opportunities for peptide vaccination. Front Immunol. 5:1712014. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Lu Y and You J: Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Theranostics. 12:5888–5913. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lei Y and Takahama Y: XCL1 and XCR1 in the immune system. Microbes Infect. 14:262–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsuo K, Kitahata K, Kawabata F, Kamei M, Hara Y, Takamura S, Oiso N, Kawada A, Yoshie O and Nakayama T: A highly active form of XCL1/lymphotactin functions as an effective adjuvant to recruit cross-presenting dendritic cells for induction of effector and memory CD8+ T cells. Front Immunol. 9:27752018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, He L and Cao X: Enhanced antitumor effects induced by lymphotactin gene-modified dendritic cells after pulsed with tumor antigen peptide. Zhonghua Yi Xue Za Zhi. 79:170–173. 1999.(In Chinese). PubMed/NCBI | |
Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Güttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, et al: Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity. 31:823–833. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fahrmann JF, Marsh T, Irajizad E, Patel N, Murage E, Vykoukal J, Dennison JB, Do KA, Ostrin E, Spitz MR, et al: Blood-based biomarker panel for personalized lung cancer risk assessment. J Clin Oncol. 40:876–883. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun QF, Zhao XN, Peng CL, Hao YT, Zhao YP, Jiang N, Xue H, Guo JZ, Yun CH, Cong B and Zhao XG: Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors. Oncol Rep. 34:2289–2295. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi T, Tsuda H, Noguchi M, Hirohashi S, Shimosato Y, Goya T and Hayata Y: Association of point mutation in c-Ki-ras oncogene in lung adenocarcinoma with particular reference to cytologic subtypes. Cancer. 66:289–294. 1990. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Lu Y, Zhu W, Wang Y, Chen X, Yi C, Luo D, Lotze MT and Zhou Q: Anti-tumor activities of lung cancer dendritic cell vaccine modified by mutant Ki-ras gene in vitro. Zhongguo Fei Ai Za Zhi. 7:104–107. 2004.(In Chinese). PubMed/NCBI | |
Sun J, Liao R, Chen Z, Wang Z, Zhang Q and Hu Y: Study on enhancing sensitivity of SPC-A1 cells to chemotherapy by Livin isoform-specific gene silencing. Zhongguo Fei Ai Za Zhi. 10:461–465. 2007.(In Chinese). PubMed/NCBI | |
Chen H, Jin Y, Chen T, Zhang M, Ma W, Xiong X and Tao X: The antitumor effect of human cord blood-derived dendritic cells modified by the livin α gene in lung cancer cell lines. Oncol Rep. 29:619–627. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Xiong L, Tao X, Li X, Su Y, Hou X and Shi H: Antitumor effects of murine bone marrow-derived dendritic cells infected with xenogeneic livin alpha recombinant adenoviral vectors against Lewis lung carcinoma. Lung Cancer. 68:338–345. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Yuan S, Peng L, Li H, Niu L, Xu H, Guo X, Yang M and Duan F: Antitumor immunity targeting fibroblast activation protein-α in a mouse Lewis lung carcinoma model. Oncol Lett. 20:868–876. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Pan J, Yin Z, Wang S, Li Y, Cai X, Zheng H and Cao Z: Dendritic cells infected with recombinant adenoviral vector encoding mouse fibroblast activation protein-α and human livin α exert an antitumor effect against Lewis lung carcinoma in mice. Immun Inflamm Dis. 11:e10112023. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Chen X, Zhou W, Fan G, Zhao P, Ren S, Zhou C and Zhang J: Immunotherapy with dendritic cells modified with tumor-associated antigen gene demonstrates enhanced antitumor effect against lung cancer. Transl Oncol. 10:132–141. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang H, Li Z, Dress RJ, Zhu Y, Zhang S, De Feo D, Kong WT, Cai P, Shin A, et al: Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. Immunity. 56:1761–1777.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
Beckwith DM and Cudic M: Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin Immunol. 47:1013892020. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zhang Z, Zhang S, Zhu P, Ko JK and Yung KK: MUC1: Structure, function, and clinic application in epithelial cancers. Int J Mol Sci. 22:65672021. View Article : Google Scholar : PubMed/NCBI | |
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi H, Lu SS, Feng J, Feng XP, Wu D, et al: ANXA1 promotes tumor immune evasion by binding PARP1 and upregulating Stat3-induced expression of PD-L1 in multiple cancers. Cancer Immunol Res. 11:1367–1383. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Liu H, Jehng T, Li Y, Chen Z, Lee KD, Shen HT, Jones L, Huang XF and Chen SY: A novel anti-PD-L1 vaccine for cancer immunotherapy and immunoprevention. Cancers (Basel). 11:19092019. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Zeng W, Jia J, Shi Y, Wang D, Dong J, Fang Z, He J, Yang X, Zhang R, et al: A novel therapeutic tumor vaccine targeting MUC1 in combination with PD-L1 elicits specific anti-tumor immunity in mice. Vaccines Basel). 10:10922022. View Article : Google Scholar : PubMed/NCBI | |
Teramoto K, Ohshio Y, Fujita T, Hanaoka J and Kontani K: Simultaneous activation of T helper function can augment the potency of dendritic cell-based cancer immunotherapy. J Cancer Res Clin Oncol. 139:861–870. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shinagawa N, Yamazaki K, Tamura Y, Imai A, Kikuchi E, Yokouchi H, Hommura F, Oizumi S and Nishimura M: Immunotherapy with dendritic cells pulsed with tumor-derived gp96 against murine lung cancer is effective through immune response of CD8+ cytotoxic T lymphocytes and natural killer cells. Cancer Immunol Immunother. 57:165–174. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Gao XD: Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater Sci Eng C Mater Biol Appl. 70:935–946. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du YC, Lin P, Zhang J, Lu YR and Ning QZ: Studies on the enhancement of DC vaccine to mouse Lewis lung cancer by CpG oligonucleotides. Zhonghua Zhong Liu Za Zhi. 27:1–5. 2005.(In Chinese). PubMed/NCBI | |
Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I and Sancho D: Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer. 7:1002019. View Article : Google Scholar : PubMed/NCBI | |
Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB, Grabbe S, Rittgen W, Edler L, Sucker A, et al: Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: A randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 17:563–570. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI | |
Anguille S, Smits EL, Lion E, van Tendeloo VF and Berneman ZN: Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 15:e257–e267. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J and Yannelli J: Autologous dendritic cell vaccines for non-small-cell lung cancer. J Clin Oncol. 22:2808–2815. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hirschowitz EA, Foody T, Hidalgo GE and Yannelli JR: Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells. Lung Cancer. 57:365–372. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chang GC, Lan HC, Juang SH, Wu YC, Lee HC, Hung YM, Yang HY, Whang-Peng J and Liu KJ: A pilot clinical trial of vaccination with dendritic cells pulsed with autologous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma. Cancer. 103:763–771. 2005. View Article : Google Scholar : PubMed/NCBI | |
Perroud MW Jr, Honma HN, Barbeiro AS, Gilli SC, Almeida MT, Vassallo J, Saad ST and Zambon L: Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: A phase I pilot study. J Exp Clin Cancer Res. 30:652011. View Article : Google Scholar : PubMed/NCBI | |
Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Yano Y, Yamamoto Y, Naitoh K, Shimizu K, Imura K, et al: Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: Clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol. 24:909–917. 2004.PubMed/NCBI | |
Teramoto K, Ozaki Y, Hanaoka J, Sawai S, Tezuka N, Fujino S, Daigo Y and Kontani K: Predictive biomarkers and effectiveness of MUC1-targeted dendritic-cell-based vaccine in patients with refractory non-small cell lung cancer. Ther Adv Med Oncol. 9:147–157. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kontani K, Taguchi O, Ozaki Y, Hanaoka J, Sawai S, Inoue S, Abe H, Hanasawa K and Fujino S: Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. Int J Mol Med. 12:493–502. 2003.PubMed/NCBI | |
Takahashi H, Okamoto M, Shimodaira S, Tsujitani S, Nagaya M, Ishidao T, Kishimoto J and Yonemitsu Y; DC-vaccine study group at the Japan Society of Innovative Cell Therapy (J-SICT), : Impact of dendritic cell vaccines pulsed with Wilms' tumour-1 peptide antigen on the survival of patients with advanced non-small cell lung cancers. Eur J Cancer. 49:852–859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li D and He S: MAGE3 and Survivin activated dendritic cell immunotherapy for the treatment of non-small cell lung cancer. Oncol Lett. 15:8777–8783. 2018.PubMed/NCBI | |
Lee JM, Lee MH, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, Schaue D, Wang G, Rosen F, Yanagawa J, et al: Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8+ T-cell infiltration. Clin Cancer Res. 23:4556–4568. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge C, Li R, Song H, Geng T, Yang J, Tan Q, Song L, Wang Y, Xue Y, Li Z, et al: Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer. 17:8842017. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Tan H and Li D: Oridonin suppresses gastric cancer SGC-7901 cell proliferation by targeting the TNF-alpha/androgen receptor/TGF-beta signalling pathway axis. J Cell Mol Med. 27:2661–2674. 2023. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Shimodaira S, Ogasawara M, Ota S, Kobayashi M, Abe H, Morita Y, Nagai K, Tsujitani S, Okamoto M, et al: Lung adenocarcinoma may be a more susceptive subtype to a dendritic cell-based cancer vaccine than other subtypes of non-small cell lung cancers: A multicenter retrospective analysis. Cancer Immunol Immunother. 65:1099–1111. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xu Z, Dai X, Zhang X and Wang X: Research progress of neoantigen-based dendritic cell vaccines in pancreatic cancer. Front Immunol. 14:11048602023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Goedegebuure P, Mardis ER, Ellis MJ, Zhang X, Herndon JM, Fleming TP, Carreno BM, Hansen TH and Gillanders WE: Cancer genome sequencing and its implications for personalized cancer vaccines. Cancers (Basel). 3:4191–4211. 2011. View Article : Google Scholar : PubMed/NCBI | |
Van Buuren MM, Calis JJ and Schumacher TN: High sensitivity of cancer exome-based CD8 T cell neo-antigen identification. Oncoimmunology. 3:e288362014. View Article : Google Scholar : PubMed/NCBI | |
Ding Z, Li Q, Zhang R, Xie L, Shu Y, Gao S, Wang P, Su X, Qin Y, Wang Y, et al: Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther. 6:262021. View Article : Google Scholar : PubMed/NCBI | |
Provencio M, Serna-Blasco R, Nadal E, Insa A, García-Campelo MR, Casal Rubio J, Dómine M, Majem M, Rodríguez-Abreu D, Martínez-Martí A, et al: Overall survival and biomarker analysis of neoadjuvant nivolumab plus chemotherapy in operable stage IIIA non-small-cell lung cancer (NADIM phase II trial). J Clin Oncol. 40:2924–2933. 2022. View Article : Google Scholar : PubMed/NCBI |