Histone lactylation: A new frontier in laryngeal cancer research (Review)
- Authors:
- Qiaoling Tong
- Chunsheng Huang
- Qizhen Tong
- Zhiyu Zhang
-
Affiliations: Department of Otolaryngology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, P.R. China, Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China, Department of Operating Room, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315000, P.R. China, Glasgow International College, Anderson College, Glasgow G11 6NU, United Kingdom - Published online on: July 2, 2025 https://doi.org/10.3892/ol.2025.15167
- Article Number: 421
This article is mentioned in:
Abstract
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nocini R, Molteni G, Mattiuzzi C and Lippi G: Updates on larynx cancer epidemiology. Chin J Cancer Res. 32:18–25. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liberale C, Soloperto D, Marchioni A, Monzani D and Sacchetto L: Updates on larynx cancer: risk factors and oncogenesis. Int J Mol Sci. 24:129132023. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Molina-Fernández E, Palacios-García JM, Moreno-Luna R, Herrero-Salado T, Ventura-Díaz J, Sánchez-Gómez S and Vilches-Arenas Á: Survival Analysis in patients with laryngeal cancer: A retrospective cohort study. Life (Basel). 13:2952023.PubMed/NCBI | |
Yu X, Zhao H, Wang R, Chen Y, Ouyang X, Li W, Sun Y and Peng A: Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discov. 10:282024. View Article : Google Scholar : PubMed/NCBI | |
Shvedunova M and Akhtar A: Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen X and Lu C: The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep. 22:e518032021. View Article : Google Scholar : PubMed/NCBI | |
Armache A, Yang S, Martínez de Paz A, Robbins LE, Durmaz C, Cheong JQ, Ravishankar A, Daman AW, Ahimovic DJ, Klevorn T, et al: Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature. 583:852–857. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mattiroli F and Penengo L: Histone ubiquitination: An integrative signaling platform in genome stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Li P and Sun Z: Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol. 14:12843442023. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jing F, Zhu L, Zhang J, Zhou X, Bai J, Li X, Zhang H and Li T: Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma. Genome Biol. 25:2722024. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Chen S, He J, Li H, Ma Z, Lubamba GP, Wang L, Guo Z and Li C: Histone lysine lactylation (Kla)-induced BCAM promotes OSCC progression and Cis-Platinum resistance. Oral Dis. 31:1116–1132. 2025. View Article : Google Scholar : PubMed/NCBI | |
Song F, Hou C, Huang Y, Liang J, Cai H, Tian G, Jiang Y, Wang Z and Hou J: Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia. Cell Signal. 120:1112282024. View Article : Google Scholar : PubMed/NCBI | |
Zang Y, Wang A, Zhang J, Xia M, Jiang Z, Jia B, Lu C, Chen C, Wang S, Zhang Y, et al: Hypoxia promotes histone H3K9 lactylation to enhance LAMC2 transcription in esophageal squamous cell carcinoma. iScience. 27:1101882024. View Article : Google Scholar : PubMed/NCBI | |
Fu C, Jiang W, Wang C, Song SJ, Tao H, Zhang XG, Li WT, Jin X, Yu BB, Hao JJ, et al: AP001885.4 promotes the proliferation of esophageal squamous cell carcinoma cells by histone lactylation- and NF-κB (p65)-dependent transcription activation and METTL3-mediated mRNA stability of c-myc. Anim Cells Syst (Seoul). 28:536–550. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Li C, Cheng Z, Li M, Shi J, Zhang Z, Jin S and Ma H: H3K9 lactylation in malignant cells facilitates CD8(+) T cell dysfunction and poor immunotherapy response. Cell Rep. 43:1146862024. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Xue L, Lin X, Shen Y and Wang X: Histone lactylation-driven GPD2 Mediates M2 macrophage polarization to promote malignant transformation of cervical cancer progression. DNA Cell Biol. 43:605–618. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Lu C: Targeting epigenetic Dysregulations in head and neck squamous cell carcinoma. J Dent Res. 104:225–234. 2025. View Article : Google Scholar : PubMed/NCBI | |
Davalos V and Esteller M: Cancer epigenetics in clinical practice. CA Cancer J Clin. 73:376–424. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pierini S, Jordanov SH, Mitkova AV, Chalakov IJ, Melnicharov MB, Kunev KV, Mitev VI, Kaneva RP and Goranova TE: Promoter hypermethylation of CDKN2A, MGMT, MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients. Head Neck. 36:1103–1108. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gallus R, Gheit T, Holzinger D, Petrillo M, Rizzo D, Petrone G, Miccichè F, Mattiucci GC, Arciuolo D, Capobianco G, et al: Prevalence of HPV infection and p16(INK4a) overexpression in surgically treated laryngeal squamous cell carcinoma. Vaccines (Basel). 10:2042022. View Article : Google Scholar : PubMed/NCBI | |
López F, Sampedro T, Llorente JL, Domínguez F, Hermsen M, Suárez C and Alvarez-Marcos C: Utility of MS-MLPA in DNA methylation profiling in primary laryngeal squamous cell carcinoma. Oral Oncol. 50:291–297. 2014. View Article : Google Scholar : PubMed/NCBI | |
Weigel C, Chaisaingmongkol J, Assenov Y, Kuhmann C, Winkler V, Santi I, Bogatyrova O, Kaucher S, Bermejo JL, Leung SY, et al: DNA methylation at an enhancer of the three prime repair exonuclease 2 gene (TREX2) is linked to gene expression and survival in laryngeal cancer. Clin Epigenetics. 11:672019. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Zhang Y, Hu Y, Zhang X, Tan J, Yao S, Wang X and Qin Y: Advances in the study of posttranslational modifications of histones in head and neck squamous cell carcinoma. Clin Epigenetics. 16:1652024. View Article : Google Scholar : PubMed/NCBI | |
Li L, Cui J, Li X, Zhu Y, Wu H and Zhou L: Prmt1-mediated histone H4R3me2a methylation regulates the proliferation, migration and invasion of laryngeal cancer cells by affecting the expression level of NCOA5. Front Oncol. 14:14891642024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang N, Zheng Z, Che Y, Suzuki M, Kano S, Lu J, Wang P, Sun Y and Homma A: Exosomal lncRNA HOTAIR induce macrophages to M2 polarization via PI3K/p-AKT/AKT pathway and promote EMT and metastasis in laryngeal squamous cell carcinoma. BMC Cancer. 22:12082022. View Article : Google Scholar : PubMed/NCBI | |
Banta A, Bratosin F, Golu I, Toma AO and Domuta EM: A systematic review of circulating miRNAs by multiple independent validated studies in laryngeal cancer. Diagnostics (Basel). 15:3942025. View Article : Google Scholar : PubMed/NCBI | |
Cui W, Meng W, Zhao L, Cao H, Chi W and Wang B: TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis. Int J Oncol. 54:2005–2018. 2019.PubMed/NCBI | |
Jiang R, Gao MZ, Chen M, Weatherspoon DJ, Watts TL and Osazuwa-Peters N: Genetic and molecular differences in head and neck cancer based on smoking history. JAMA Otolaryngol Head Neck Surg. 151:379–388. 2025. View Article : Google Scholar : PubMed/NCBI | |
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, et al: Alcohol and head and neck cancer: Updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants (Basel). 11:1452022. View Article : Google Scholar : PubMed/NCBI | |
Zhou YQ, Jiang JX, He S, Li YQ, Cheng XX, Liu SQ, Wei PP, Guan XY, Ong CK, Wang VY, et al: Epstein-Barr virus hijacks histone demethylase machinery to drive epithelial malignancy progression through KDM5B upregulation. Signal Transduct Target Ther. 10:832025. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Meng Y, Guo J, Chen P, Wang J, Shi L, Wang D, Qu H, Wu P, Fan C, et al: Human papillomavirus-encoded circular RNA circE7 promotes immune evasion in head and neck squamous cell carcinoma. Nat Commun. 15:86092024. View Article : Google Scholar : PubMed/NCBI | |
Motoc GV, Juncar RI, Moca AE, Motoc O, Vaida LL and Juncar M: The relationship between age, gender, BMI, diet, salivary pH and periodontal pathogenic bacteria in children and adolescents: A cross-sectional study. Biomedicines. 11:23742023. View Article : Google Scholar : PubMed/NCBI | |
Chen F, He X, Xu W, Zhou L, Liu Q, Chen W, Zhu WG and Zhang J: Chromatin lysine acylation: On the path to chromatin homeostasis and genome integrity. Cancer Sci. 115:3506–3519. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Helin K: Roles of H3K4 methylation in biology and disease. Trends Cell Biol. 35:115–128. 2025. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Zhao S and Wang GG: Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘Readout’, and phase separation-based compaction. Trends Genet. 37:547–565. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gong P, Guo Z, Wang S, Gao S and Cao Q: Histone phosphorylation in DNA damage response. Int J Mol Sci. 26:24052025. View Article : Google Scholar : PubMed/NCBI | |
Shu Q, Liu Y and Ai H: The emerging role of the histone H2AK13/15 ubiquitination: Mechanisms of writing, reading, and erasing in DNA damage repair and disease. Cells. 14:3072025. View Article : Google Scholar : PubMed/NCBI | |
Rabinowitz JD and Enerbäck S: Lactate: the ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fendt SM: 100 years of the Warburg effect: A cancer metabolism endeavor. Cell. 187:3824–3828. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J and Liu B: Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S and Jia R: Lactate and lactylation in cancer. Signal Transduct Target Ther. 10:382025. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Wei P and Li D: Warburg effect in colorectal cancer: The emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 15:1602022. View Article : Google Scholar : PubMed/NCBI | |
Zhi S, Chen C, Huang H, Zhang Z, Zeng F and Zhang S: Hypoxia-inducible factor in breast cancer: Role and target for breast cancer treatment. Front Immunol. 15:13708002024. View Article : Google Scholar : PubMed/NCBI | |
Zhao LP, Zheng RR, Kong RJ, Huang CY, Rao XN, Yang N, Chen AL, Yu XY, Cheng H and Li SY: Self-delivery ternary bioregulators for photodynamic amplified immunotherapy by tumor microenvironment reprogramming. ACS Nano. 16:1182–1197. 2022. View Article : Google Scholar : PubMed/NCBI | |
Galle E, Wong CW, Ghosh A, Desgeorges T, Melrose K, Hinte LC, Castellano-Castillo D, Engl M, de Sousa JA, Ruiz-Ojeda FJ, et al: H3K18 lactylation marks tissue-specific active enhancers. Genome Biol. 23:2072022. View Article : Google Scholar : PubMed/NCBI | |
Chu X, Di C, Chang P, Li L, Feng Z, Xiao S, Yan X, Xu X, Li H, Qi R, et al: Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol. 12:7866662022. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Meng W, Dai Y, Xu L, Ding N, Zhang J and Zhuang X: Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis. Cell Death Discov. 11:542025. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Z, Wang Q, Li X and Guo Y: Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett. 29:232024. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y and Li X: The role of histone post-translational modifications in cancer and cancer immunity: Functions, mechanisms and therapeutic implications. Front Immunol. 15:14952212024. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, Zhou Z, Hu Q and Cong X: Lactylation: the novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics. 16:722024. View Article : Google Scholar : PubMed/NCBI | |
He W, Li Q and Li X: Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim Biophys Acta Rev Cancer. 1878:1888372023. View Article : Google Scholar : PubMed/NCBI | |
Neganova ME, Klochkov SG, Aleksandrova YR and Aliev G: Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol. 83:452–471. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lv M, Huang Y, Chen Y and Ding K: Lactylation modification in cancer: Mechanisms, functions, and therapeutic strategies. Exp Hematol Oncol. 14:322025. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhao F and Qu Y: Lactylation: A novel post-translational modification with clinical implications in CNS diseases. Biomolecules. 14:11752024. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H, Guo D, Meng Y, Han H, Luo S, et al: ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab. 37:361–376.e7. 2025. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Feng Q, Qiao Y, Pan S, Liang L, Liu Y, Zhang X, Liu D and Liu Z and Liu Z: ACSF2 and lysine lactylation contribute to renal tubule injury in diabetes. Diabetologia. 67:1429–1443. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Jia M, Feng Y and Cheng X: Lactate is a bridge linking glycolysis and autophagy through lactylation. Autophagy. 19:3240–3241. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu C, Li R, Zhou L, Ran Y, Yang Q, Huang H, Lu H, Song H, Yang B, et al: AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases. Nature. 634:1229–1237. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family in health and disease. Signal Transduct Target Ther. 7:4022022. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Liu Z, Zhang N, Wei W, Cheng K, Sun H and Hao Q: Identification of SIRT3 as an eraser of H4K16la. iScience. 26:1077572023. View Article : Google Scholar : PubMed/NCBI | |
Zu H, Li C, Dai C, Pan Y, Ding C, Sun H, Zhang X, Yao X, Zang J and Mo X: SIRT2 functions as a histone delactylase and inhibits the proliferation and migration of neuroblastoma cells. Cell Discov. 8:542022. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ye Z, Li Z, Jing DS, Fan GX, Liu MQ, Zhuo QF, Ji SR, Yu XJ, Xu XW and Qin Y: Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif. 56:e134782023. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Jin Y and Fan Z: The mechanism of warburg effect-induced chemoresistance in cancer. Front Oncol. 11:6980232021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang H, Wang Q, Yu X and Ouyang L: Lactate-induced protein lactylation in cancer: Functions, biomarkers and immunotherapy strategies. Front Immunol. 15:15130472025. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Qiao Z, Hao X and Zhang Y: LDHA-induced histone lactylation mediates the development of osteoarthritis through regulating the transcription activity of TPI1 gene. Autoimmunity. 57:23848892024. View Article : Google Scholar : PubMed/NCBI | |
Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, et al: Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 30:1055–1074.e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Zhang K, Wang Y and Gu Y: Comprehensive review of histone lactylation: Structure, function, and therapeutic targets. Biochem Pharmacol. 225:1163312024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Huang W and Zhang J, Li Y, Xing Z, Guo L, Jiang H and Zhang J: High-intensity interval training induces lactylation of fatty acid synthase to inhibit lipid synthesis. BMC Biol. 21:1962023. View Article : Google Scholar : PubMed/NCBI | |
Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, Kim JK, Heo Y, Lee HS, Lee MY, et al: A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 31:267–283.e12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Li L, Chen X, Gou H, Yan K and Xu Y: Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Valenzuela F, Escobar E, Pérez-Tomás R and Montecinos VP: The inflammatory profile of the tumor microenvironment, orchestrated by cyclooxygenase-2, promotes epithelial-mesenchymal transition. Front Oncol. 11:6867922021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Qu Y, Ji J, Liu H, Luo H, Li J and Han X: Colorectal cancer cells establish metabolic reprogramming with cancer-associated fibroblasts (CAFs) through lactate shuttle to enhance invasion, migration, and angiogenesis. Int Immunopharmacol 143(Pt 2). 1134702024. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Zhang X, Shi J, Huang J, Wang S, Li X, Lin H, Zhao D, Ye M, Zhang S, et al: Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. J Clin Invest. 135:e1870242025. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, Song G, Pan L, Xu K and Wang C: Lactylome analysis unveils lactylation-dependent mechanisms of stemness remodeling in the liver cancer stem cells. Adv Sci (Weinh). 11:e24059752024. View Article : Google Scholar : PubMed/NCBI | |
Mohiuddin IS, Wei SJ and Kang MH: Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis. 1866:1654322020. View Article : Google Scholar : PubMed/NCBI | |
Montoro-Jiménez I, Granda-Díaz R, Menéndez ST, Prieto-Fernández L, Otero-Rosales M, Álvarez-González M, García-de-la-Fuente V, Rodríguez A, Rodrigo JP, Álvarez-Teijeiro S, et al: Combined PIK3CA and SOX2 gene amplification predicts laryngeal cancer risk beyond histopathological grading. Int J Mol Sci. 25:26952024. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Chen Z and Yu G: microRNA-139-3p inhibits malignant behaviors of laryngeal cancer cells via the KDM5B/SOX2 Axis and the Wnt/β-catenin pathway. Cancer Manag Res. 12:9197–9209. 2020. View Article : Google Scholar : PubMed/NCBI | |
Clara JA, Monge C, Yang Y and Takebe N: Targeting signalling pathways and the immune microenvironment of cancer stem cells-a clinical update. Nat Rev Clin Oncol. 17:204–232. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W, Jiang X, Li H, Yang P and Xiang D: N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells' properties and lenvatinib resistance through WNT/β-catenin and hippo signaling pathways. Gastroenterology. 164:990–1005. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Jia R, Wang L, Yang Q, Hu X, Fu Q, Zhang X, Li W and Ren Y: The emerging roles of Rad51 in cancer and its potential as a therapeutic target. Front Oncol. 12:9355932022. View Article : Google Scholar : PubMed/NCBI | |
Zhong JT, Yu Q, Zhou SH, Yu E, Bao YY, Lu ZJ and Fan J: GLUT-1 siRNA enhances radiosensitization of laryngeal cancer stem cells via enhanced DNA damage, cell cycle redistribution, and promotion of apoptosis in vitro and in vivo. Onco Targets Ther. 12:9129–9142. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Liu G, Chen L, Kwok HF and Lin Y: Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol. 86:1231–1243. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Zhong Q, Wang Y, Yin C, Bai M, Zhu J, Chen J, Li H and Hong W: Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy. Ageing Res Rev. 104:1026702025. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H and Qu S: The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int. 24:2462024. View Article : Google Scholar : PubMed/NCBI | |
Peng T, Sun F, Yang JC, Cai MH, Huai MX, Pan JX, Zhang FY and Xu LM: Novel lactylation-related signature to predict prognosis for pancreatic adenocarcinoma. World J Gastroenterol. 30:2575–2602. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren H and Zheng L: H3K18 lactylation potentiates immune escape of non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Liang P, Chen Z, Chen Z, Jin T, He F, Chen X and Yang K: CAF-secreted LOX promotes PD-L1 expression via histone Lactylation and regulates tumor EMT through TGFβ/IGF1 signaling in gastric cancer. Cell Signal. 124:1114622024. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Dong H, Su R, Chen J, Li W, Yin S and Zhang C: Lactylation-related gene signature accurately predicts prognosis and immunotherapy response in gastric cancer. Front Oncol. 14:14855802024. View Article : Google Scholar : PubMed/NCBI | |
Kitamura F, Semba T, Yasuda-Yoshihara N, Yamada K, Nishimura A, Yamasaki J, Nagano O, Yasuda T, Yonemura A, Tong Y, et al: Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer. JCI Insight. 8:e1630222023. View Article : Google Scholar : PubMed/NCBI | |
Truong Hoang Q, Huynh KA, Nguyen Cao TG, Kang JH, Dang XN, Ravichandran V, Kang HC, Lee M, Kim JE, Ko YT, et al: Piezocatalytic 2D WS(2) nanosheets for ultrasound-triggered and mitochondria-targeted piezodynamic cancer therapy synergized with energy metabolism-targeted chemotherapy. Adv Mater. 35:e23004372023. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wu M, Jiang Y, Zhou J, Chen S, Wang Q, Sun H, Deng Y, Zhou Z and Sun M: Biomimetic calcium-chelation nanoparticles reprogram tumor metabolism to enhance antitumor immunity. J Control Release. 380:362–374. 2025. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Yang J, Xu J, Pan H, Wang W, Yu X and Shi S: Histone lactylation: From tumor lactate metabolism to epigenetic regulation. Int J Biol Sci. 20:1833–1854. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pai S, Yadav VK, Kuo KT, Pikatan NW, Lin CS, Chien MH, Lee WH, Hsiao M, Chiu SC, Yeh CT and Tsai JT: PDK1 Inhibitor BX795 Improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-mediated glycolysis signaling pathway. Int J Mol Sci. 22:114922021. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Huang Z and Li L: LDHB mediates histone lactylation to activate PD-L1 and promote ovarian cancer immune escape. Cancer Invest. 43:70–79. 2025. View Article : Google Scholar : PubMed/NCBI | |
Li T, Xu D, Ruan Z, Zhou J, Sun W, Rao B and Xu H: Metabolism/immunity dual-regulation thermogels potentiating immunotherapy of glioblastoma through lactate-excretion inhibition and PD-1/PD-L1 blockade. Adv Sci (Weinh). 11:e23101632024. View Article : Google Scholar : PubMed/NCBI | |
Littleflower AB, Parambil ST, Antony GR and Subhadradevi L: The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment. Biochimie. 220:107–121. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J and He C: Histone lactylation in macrophage biology and disease: From plasticity regulation to therapeutic implications. EBioMedicine. 111:1055022025. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang J, Lao M, Liu F, Zhu H, Man K and Zhang J: Study on the effect of protein lysine lactylation modification in macrophages on inhibiting periodontitis in rats. J Periodontol. 95:50–63. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li H, Sun L, Gao P and Hu H: Lactylation in cancer: Current understanding and challenges. Cancer Cell. 42:1803–1807. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Wang P, Cao P, Wang S, Yang Y, Su H and Nashun B: Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenetics Chromatin. 14:572021. View Article : Google Scholar : PubMed/NCBI | |
Cui Z, Li Y, Lin Y, Zheng C, Luo L, Hu D, Chen Y, Xiao Z and Sun Y: Lactylproteome analysis indicates histone H4K12 lactylation as a novel biomarker in triple-negative breast cancer. Front Endocrinol (Lausanne). 15:13286792024. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H and Shen M: Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle. 14:2851–2865. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dong F, Yin H and Zheng Z: Hypoxia-inducible factor-1α regulates BNIP3-dependent mitophagy and mediates metabolic reprogramming through histone lysine lactylation modification to affect glioma proliferation and invasion. J Biochem Mol Toxicol. 39:e700692025. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Xin J, Yu X, Li Z and Li N: Recent advances of lysine lactylation in prokaryotes and eukaryotes. Front Mol Biosci. 11:15109752025. View Article : Google Scholar : PubMed/NCBI | |
Sar P and Dalai S: CRISPR/Cas9 in epigenetics studies of health and disease. Prog Mol Biol Transl Sci. 181:309–343. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M, Spiegel DA, Chapman E, et al: Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol. 27:206–213.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mazzio E, Badisa R, Mack N, Cassim S, Zdralevic M, Pouyssegur J and Soliman KFA: Whole-transcriptome analysis of fully viable energy efficient glycolytic-null cancer cells established by double genetic knockout of lactate dehydrogenase A/B or glucose-6-phosphate isomerase. Cancer Genomics Proteomics. 17:469–497. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miles LB, Calcinotto V, Oveissi S, Serrano RJ, Sonntag C, Mulia O, Lee C and Bryson-Richardson RJ: CRIMP: A CRISPR/Cas9 insertional mutagenesis protocol and toolkit. Nat Commun. 15:50112024. View Article : Google Scholar : PubMed/NCBI | |
Meyers S, Demeyer S and Cools J: CRISPR screening in hematology research: From bulk to single-cell level. J Hematol Oncol. 16:1072023. View Article : Google Scholar : PubMed/NCBI | |
Merlin JPJ and Abrahamse H: Optimizing CRISPR/Cas9 precision: Mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomed Pharmacother. 180:1175162024. View Article : Google Scholar : PubMed/NCBI |