1
|
Takenaka M, Hanagiri T, Shinohara S,
Kuwata T, Chikaishi Y, Oka S, Shigematsu Y, Nagata Y, Shimokawa H,
Nakagawa M, et al: The prognostic significance of HER2
overexpression in non-small cell lung cancer. Anticancer Res.
31:4631–4636. 2011.PubMed/NCBI
|
2
|
Zhu X, Dong D, Chen Z, Fang M, Zhang L,
Song J, Yu D, Zang Y, Liu Z, Shi J and Tian J: Radiomic signature
as a diagnostic factor for histologic subtype classification of
non-small cell lung cancer. Eur Radiol. 28:2772–2778. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Thai AA, Solomon BJ, Sequist LV, Gainor JF
and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen K, Wang M and Song Z: Multi-task
learning-based histologic subtype classification of non-small cell
lung cancer. Radiol Med. 128:537–543. 2023. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bashir U, Kawa B, Siddique M, Mak SM, Nair
A, McLean E, Bille A, Goh V and Cook G: Non-invasive classification
of non-small cell lung cancer: A comparison between random forest
models utilising radiomic and semantic features. Br J Radiol.
92:201901592019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kutob L and Schneider F: Lung cancer
staging. Surg Pathol Clin. 13:57–71. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Valente IR, Cortez PC, Neto EC, Soares JM,
de Albuquerque VH and Tavares JM: Automatic 3D pulmonary nodule
detection in CT images: A survey. Comput Methods Programs Biomed.
124:91–107. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
León-Atance P, Moreno-Mata N,
González-Aragoneses F, Cañizares-Carretero M, García-Jiménez MD,
Genovés-Crespo M, Honguero-Martínez AF, Rombolá CA, Simón-Adiego CM
and Peñalver-Pascual R: Multicenter analysis of survival and
prognostic factors in pathologic stage I non-small-cell lung cancer
according to the new 2009 TNM classification. Arch Bronconeumol.
47:441–446. 2011.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI
|
9
|
Molina JR, Yang P, Cassivi SD, Schild SE
and Adjei AA: Non-small cell lung cancer: Epidemiology, risk
factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594.
2008. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Zarogoulidis K, Zarogoulidis P, Darwiche
K, Boutsikou E, Machairiotis N, Tsakiridis K, Katsikogiannis N,
Kougioumtzi I, Karapantzos I, Huang H and Spyratos D: Treatment of
non-small cell lung cancer (NSCLC). J Thorac Dis. 5 (Suppl
4):S389–S396. 2013.PubMed/NCBI
|
11
|
Duma N, Santana-Davila R and Molina JR:
Non-small cell lung cancer: Epidemiology, screening, diagnosis, and
treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Magome T, Froelich J, Takahashi Y,
Arentsen L, Holtan S, Verneris MR, Brown K, Haga A, Nakagawa K,
Chakrabarty JL, et al: Evaluation of functional marrow irradiation
based on skeletal marrow composition obtained using dual-energy
computed tomography. Int J Radiat Oncol Biol Phys. 96:679–687.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liam CK, Andarini S, Lee P, Ho JC, Chau NQ
and Tscheikuna J: Lung cancer staging now and in the future.
Respirology. 20:526–534. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu W, Tang C, Hobbs BP, Li X, Koay EJ,
WistubaI I, Sepesi B, Behrens C, Canales JR, Cuentas ER, et al:
Development and validation of a predictive radiomics model for
clinical outcomes in stage I non-small cell lung cancer. Int J
Radiat Oncol Biol Phys. 102:1090–1097. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ,
Han J, Choi JY, Kwon OJ, Shim YM and Kim S: Non-small cell lung
cancer: Prospective comparison of integrated FDG PET/CT and CT
alone for preoperative staging. Radiology. 236:1011–1019. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
van Timmeren JE, Leijenaar RTH, van Elmpt
W, Reymen B, Oberije C, Monshouwer R, Bussink J, Brink C, Hansen O
and Lambin P: Survival prediction of non-small cell lung cancer
patients using radiomics analyses of cone-beam CT images. Radiother
Oncol. 123:363–369. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fass L: Imaging and cancer: A review. Mol
Oncol. 2:115–152. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Eisenhauer EA, Therasse P, Bogaerts J,
Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S,
Mooney M, et al: New response evaluation criteria in solid tumours:
Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247.
2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Choi ER, Lee HY, Jeong JY, Choi YL, Kim J,
Bae J, Lee KS and Shim YM: Quantitative image variables reflect the
intratumoral pathologic heterogeneity of lung adenocarcinoma.
Oncotarget. 7:67302–67313. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu L, Tao G, Zhu L, Wang G, Li Z, Ye J and
Chen Q: Prediction of pathologic stage in non-small cell lung
cancer using machine learning algorithm based on CT image feature
analysis. BMC Cancer. 19:4642019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tang X, Huang H, Du P, Wang L, Yin H and
Xu X: Intratumoral and peritumoral CT-based radiomics strategy
reveals distinct subtypes of non-small-cell lung cancer. J Cancer
Res Clin Oncol. 148:2247–2260. 2022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang X, Zhang G, Qiu X, Yin J, Tan W, Yin
X, Yang H, Liao L, Wang H and Zhang Y: Radiomics under 2D regions,
3D regions, and peritumoral regions reveal tumor heterogeneity in
non-small cell lung cancer: A multicenter study. Radiol Med.
128:1079–1092. 2023. View Article : Google Scholar : PubMed/NCBI
|
23
|
Caruana R: Multitask learning. Machine
Learning. 28:41–75. 1997. View Article : Google Scholar
|
24
|
Lin J, Yu Y, Zhang X, Wang Z and Li S:
Classification of histological types and stages in non-small cell
lung cancer using radiomic features based on CT images. J Digit
Imaging. 36:1029–1037. 2023. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bakr S, Gavaert O, Echegaray S, Ayers K,
Zhou M, Shafiq M, Zheng H, Zhang W, Leung A, et al: Data for NSCLC
Radiogenomics. Version 4 [Data set]. The Cancer Imaging Archive;
2017, https://www.cancerimagingarchive.net/collection/nsclc-radiogenomics/December
13–2024
|
26
|
Aerts HJWL, Rios Velazques E, Leijenaar
RTH, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R,
Haibe-Kains B, et al: Data From NSCLC-Radiomics-Genomics. Version 1
[Data set]. The Cancer Imaging Archive; 2015, https://www.cancerimagingarchive.net/collection/nsclc-radiomics-genomics/#citationsDecember
13–2024
|
27
|
Rami-Porta R, Bolejack V, Crowley J, Ball
D, Kim J, Lyons G, Rice T, Suzuki K, Thomas CF Jr, Travis WD, et
al: The IASLC lung cancer staging project: Proposals for the
revisions of the T descriptors in the forthcoming eighth edition of
the TNM classification for lung cancer. J Thorac Oncol.
10:990–1003. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li M, Li X, Guo Y, Miao Z, Liu X, Guo S
and Zhang H: Development and assessment of an individualized
nomogram to predict colorectal cancer liver metastases. Quant
Imaging Med Surg. 10:397–414. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
van Griethuysen JJM, Fedorov A, Parmar C,
Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC,
Pieper S and Aerts H: Computational radiomics system to decode the
radiographic phenotype. Cancer Res. 77:e104–e107. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zwanenburg A, Leger S, Agolli L, Pilz K,
Troost EGC, Richter C and Löck S: Assessing robustness of radiomic
features by image perturbation. Sci Rep. 9:6142019. View Article : Google Scholar : PubMed/NCBI
|
31
|
McHugh DJ, Porta N, Little RA, Cheung S,
Watson Y, Parker GJM, Jayson GC and O'Connor JPB: Image contrast,
image pre-processing, and T(1) mapping affect MRI radiomic feature
repeatability in patients with colorectal cancer liver metastases.
Cancers (Basel). 13:2402021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu CY, Fu JY, Wu CF, Liu YH, Hsieh MJ, Wu
YC, Yang CT and Tsai YH: Pathologic stage of nonsmall cell lung
cancer patients presenting as resectable cases after neoadjuvant
therapy did not predict the prognosis. Medicine. 94:12015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Song F, Song X, Feng Y, Fan G, Sun Y,
Zhang P, Li J, Liu F and Zhang G: Radiomics feature analysis and
model research for predicting histopathological subtypes of
non-small cell lung cancer on CT images: A multi-dataset study. Med
Phys. 50:4351–4365. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ganeshan B, Abaleke S, Young RC, Chatwin
CR and Miles KA: Texture analysis of non-small cell lung cancer on
unenhanced computed tomography: Initial evidence for a relationship
with tumour glucose metabolism and stage. Cancer Imaging.
10:137–143. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Erol M, Önner H and Küçükosmanoğlu İ:
Association of fluorodeoxyglucose positron emission tomography
radiomics features with clinicopathological factors and prognosis
in lung squamous cell cancer. Nucl Med Mol Imaging. 56:306–312.
2022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shin SY, Hong IK and Jo YS: Quantitative
computed tomography texture analysis: Can it improve diagnostic
accuracy to differentiate malignant lymph nodes? Cancer Imaging.
19:252019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ren D, Liu L, Sun A, Wei Y, Wu T, Wang Y,
He X, Liu Z, Zhu J and Wang G: Prediction of solid pseudopapillary
tumor invasiveness of the pancreas based on multiphase
contrast-enhanced CT radiomics nomogram. Front Oncol.
15:15131932025. View Article : Google Scholar : PubMed/NCBI
|
38
|
Miao L, Xiao G, Chen W, Yang G, Hong D,
Wang Z, Zhang L and Huang W: Non-invasive assessment of programmed
cell death ligand-1 expression using 18F-FDG PET-CT imaging in
esophageal squamous cell carcinoma. Sci Rep. 14:260822024.
View Article : Google Scholar : PubMed/NCBI
|