
Research progress of anti‑angiogenic therapy combined with immunotherapy and radiotherapy for the treatment of brain metastases in non‑small cell lung cancer (Review)
- Authors:
- Man Li
- Jingyan Gao
- Fei Lu
- Chengshu Gong
- Jie Zhang
- Li Wang
- Yaoxiong Xia
-
Affiliations: Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan 650032, P.R. China - Published online on: July 8, 2025 https://doi.org/10.3892/ol.2025.15180
- Article Number: 434
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025. View Article : Google Scholar : PubMed/NCBI | |
Gansler T, Ganz PA, Grant M, Greene FL, Johnstone P, Mahoney M, Newman LA, Oh WK, Thomas CR Jr, Thun MJ, et al: Sixty years of CA. Cancer J Clin. 60:345–350. 2010. View Article : Google Scholar | |
Soffietti R, Ahluwalia M, Lin N and Rudà R: Management of brain metastases according to molecular subtypes. Nat RevNeurol. 16:557–574. 2020. | |
El Rassy E, Botticella A, Kattan J, Le Péchoux C, Besse B and Hendriks L: Non-small cell lung cancer brain metastases and the immune system: From brain metastases development to treatment. Cancer Treat Rev. 68:69–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, Dunn IF, Gaspar LE, Gatson NTN, Gondi V, et al: Treatment for brain metastases: ASCO-SNO-ASTRO guideline. J Clin Oncol. 40:492–516. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sung KS: Clinical practice guidelines for brain metastasis from solid tumors. Brain Tumor Res Treat. 12:14–22. 2024. View Article : Google Scholar : PubMed/NCBI | |
Berger A, Mullen R, Bernstein K, Alzate JD, Silverman JS, Sulman EP, Donahue BR, Chachoua A, Shum E, Velcheti V, et al: Extended survival in patients with non-small-cell lung cancer-associated brain metastases in the modern era. Neurosurgery. 93:50–59. 2023. View Article : Google Scholar : PubMed/NCBI | |
Berghoff AS, Ilhan-Mutlu A, Dinhof C, Magerle M, Hackl M, Widhalm G, Hainfellner JA, Dieckmann K, Pichler J, Hutterer M, et al: Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: Analysis of 639 cases. Neuropathol Appl Neurobiol. 41:e41–e55. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Zhao W, Ye B and Chen D: Combination of immune checkpoint inhibitors and anti-angiogenic agents in brain metastases from non-small cell lung cancer. Front Oncol. 11:6703132021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song M, Wang A, Zhao Y, Wei Z and Lu Y: Microbiome crosstalk in immunotherapy and antiangiogenesis therapy. Front Immunol. 12:7479142021. View Article : Google Scholar : PubMed/NCBI | |
Tu J, Liang H, Li C, Huang Y, Wang Z, Chen X and Yuan X: The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front Immunol. 14:11989722023. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Niu W, Du F, Du C, Li S, Wang J, Li L, Wang F, Hao Y, Li C and Chi Y: Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors. J Hematol Oncol. 9:1052016. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Fang X, Yin T, Tian H, Yu J and Teng F: Efficacy and safety of Anti-PD-1 plus anlotinib in patients with advanced non-small-cell lung cancer after previous systemic treatment failure-a retrospective study. Front Oncol. 11:6281242021. View Article : Google Scholar : PubMed/NCBI | |
Wang YX, Cheng C and Zhuang HQ: The safety and efficacy of anlotinib in combination with stereotactic radiotherapy for the treatment of brain metastases from non-small cell lung cancer. Zhonghua Yi Xue Za Zhi. 102:930–934. 2022.PubMed/NCBI | |
Dutta S, Ganguly A, Chatterjee K, Spada S and Mukherjee S: Targets of immune escape mechanisms in cancer: Basis for development and evolution of cancer immune checkpoint inhibitors. Biology (Basel). 12:2182023.PubMed/NCBI | |
Vilariño N, Bruna J, Bosch-Barrera J, Valiente M and Nadal E: Immunotherapy in NSCLC patients with brain metastases. Understanding brain tumor microenvironment and dissecting outcomes from immune checkpoint blockade in the clinic. Cancer Treat Rev. 89:1020672020. View Article : Google Scholar : PubMed/NCBI | |
Xiao G, Liu Z, Gao X, Wang H, Peng H, Li J, Yang L, Duan H and Zhou R: Immune checkpoint inhibitors for brain metastases in non-small-cell lung cancer: From rationale to clinical application. Immunotherapy. 13:1031–1051. 2021. View Article : Google Scholar : PubMed/NCBI | |
Spano D and Zollo M: Tumor microenvironment: A main actor in the metastasis process. Clin Exp Metastasis. 29:381–395. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H and Wnag C: Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar : PubMed/NCBI | |
Rios-Hoyo A and Arriola E: Immunotherapy and brain metastasis in lung cancer: Connecting bench side science to the clinic. Front Immunol. 14:12210972023. View Article : Google Scholar : PubMed/NCBI | |
Mansfield AS, Aubry MC, Moser JC, Harrington SM, Dronca RS, Park SS and Dong H: Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol. 27:1953–1958. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guan Z, Lan H, Cai X, Zhang Y, Liang A and Li J: Blood-Brain barrier, cell junctions, and tumor microenvironment in brain metastases, the biological prospects and dilemma in therapies. Front Cell Dev Biol. 9:7229172021. View Article : Google Scholar : PubMed/NCBI | |
Harter PN, Bernatz S, Scholz A, Zeiner PS, Zinke J, Kiyose M, Blasel S, Beschorner R, Senft C, Bender B, et al: Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget. 6:40836–40849. 2015. View Article : Google Scholar : PubMed/NCBI | |
Téglási V, Reiniger L, Fábián K, Pipek O, Csala I, Bagó AG, Várallyai P, Vízkeleti L, Rojkó L, Tímár J, et al: Evaluating the significance of density, localization, and PD-1/PD-L1 immunopositivity of mononuclear cells in the clinical course of lung adenocarcinoma patients with brain metastasis. Neuro Oncol. 19:1058–1067. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Keam B, Kim S, Kim M, Kim SH, Kim JW, Kim YJ, Kim TM, Jeon YK, Kim DW, et al: Differences in tumor microenvironments between primary lung tumors and brain metastases in lung cancer patients: Therapeutic implications for immune checkpoint inhibitors. BMC Cancer. 19:192019. View Article : Google Scholar : PubMed/NCBI | |
Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z and Motallebnezhad M: Immune checkpoints and cancer development: Therapeutic implications and future directions. Pathol Res Pract. 223:1534852021. View Article : Google Scholar : PubMed/NCBI | |
Yu WD, Sun G, Li J, Xu J and Wang X: Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452:66–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bader JE, Voss K and Rathmell JC: Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell. 78:1019–1033. 2020. View Article : Google Scholar : PubMed/NCBI | |
Darvin P, Toor SM, Nair VS and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li M, Hou X, Sai K, Wu L, Chen J, Zhang B, Wang N, Wu L, Zheng H, Zhang J, et al: Immune suppressive microenvironment in brain metastatic non-small cell lung cancer: Comprehensive immune microenvironment profiling of brain metastases versus paired primary lung tumors (GASTO 1060). Oncoimmunology. 11:20598742022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen R, Wa Y, Ding S, Yang Y, Liao J, Tong L and Xiao G: Tumor immune microenvironment and immunotherapy in brain metastasis from non-small cell lung cancer. Front Immunol. 13:8294512022. View Article : Google Scholar : PubMed/NCBI | |
Takamori S, Toyokawa G, Takada K, Shoji F, Okamoto T and Maehara Y: Combination therapy of radiotherapy and Anti-PD-1/PD-L1 treatment in non-small-cell lung cancer: A mini-review. Clin Lung Cancer. 19:12–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Popat S, Grohé C, Corral J, Reck M, Novello S, Gottfried M, Radonjic D and Kaiser R: Anti-angiogenic agents in the age of resistance to immune checkpoint inhibitors: Do they have a role in non-oncogene-addicted non-small cell lung cancer? Lung Cancer. 144:76–84. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie M and Su C: Microenvironment and the progress of immunotherapy in clinical practice of NSCLC brain metastasis. Front Oncol. 12:10062842022. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Xu J, Ye Y, Wang Y, Luo S and Gong X: The combination of radiotherapy with immunotherapy and potential predictive biomarkers for treatment of non-small cell lung cancer patients. Front Immunol. 12:7236092021. View Article : Google Scholar : PubMed/NCBI | |
Suwinski R: Combination of immunotherapy and radiotherapy in the treatment of brain metastases from non-small cell lung cancer. J Thorac Dis. 13:3315–3322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen YA, Zhuang H and Wang J: The rationale and toxicity of combined cranial radiotherapy and immune checkpoint inhibitors in non-small cell lung cancer. Asia Pac J Clin Oncol. 18:165–170. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Chen Y and Wang M: Efficacy and safety of radiotherapy combined with immunotherapy for brain metastases from lung cancer: A meta-analysis. Zhongguo Fei Ai Za Zhi. 25:715–722. 2022.(In Chinese). PubMed/NCBI | |
Lastwika KJ, Wilson W III, Li QK, Norris J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, et al: Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 76:227–238. 2016. View Article : Google Scholar : PubMed/NCBI | |
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y and Fan S: Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer. 13:3434–3443. 2022. View Article : Google Scholar : PubMed/NCBI | |
Perri F, Pacelli R, Scarpati GD, Cella L, Giuliano M, Caponigro F and Pepe S: Radioresistance in head and neck squamous cell carcinoma: Biological bases and therapeutic implications. Head Neck. 37:763–770. 2015. View Article : Google Scholar : PubMed/NCBI | |
Goedegebuure RSA, de Klerk LK, Bass AJ, Derks S and Thijssen V: Combining radiotherapy with anti-angiogenic therapy and immunotherapy; A therapeutic triad for cancer? Front Immunol. 14:31072019. View Article : Google Scholar | |
Ikarashi D, Okimoto T, Shukuya T, Onagi H, Hayashi T, Sinicropi-Yao SL, Amann JM, Nakatsura T, Kitano S and Carbone DP: Comparison of tumor microenvironments between primary tumors and brain metastases in patients with NSCLC. JTO Clin Res Rep. 2:1002302021.PubMed/NCBI | |
Nanda VGY, Peng W, Hwu P, Davies MA, Ciliberto G, Fattore L, Malpicci D, Aurisicchio L, Ascierto PA, Croce CM, et al: Melanoma and immunotherapy bridge 2015 : Naples, Italy. 1–5 December 2015. J Transl Med. 14:652016. View Article : Google Scholar : PubMed/NCBI | |
Patel RR, He K, Barsoumian HB, Chang JY, Tang C, Verma V, Comeaux N, Chun SG, Gandhi S, Truong MT, et al: High-dose irradiation in combination with non-ablative low-dose radiation to treat metastatic disease after progression on immunotherapy: Results of a phase II trial. Radiother Oncol. 162:60–67. 2021. View Article : Google Scholar : PubMed/NCBI | |
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P and Bertero L: Modern stereotactic radiotherapy for brain metastases from lung cancer: Current trends and future perspectives based on integrated translational approaches. Cancers (Basel). 15:46222023. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Zhao Z, Li X and Liao G: Anti-PD1 therapy plus whole-brain radiation therapy May Prolong PFS in selected non-small cell lung cancer patients with brain metastases: A retrospective study. Int J Gen Med. 14:8903–8918. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen ZY, Duan XT, Qiao SM and Zhu XX: Radiotherapy combined with PD-1/PD-L1 inhibitors in NSCLC brain metastases treatment: The mechanisms, advances, opportunities, and challenges. Cancer Med. 12:995–1006. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo T, Zhou Y, Liang F, Wang Z, Bourbonne V, Käsmann L, Sundahl N, Wu AJ, Ni J and Zhu Z: Potential synergistic effects of cranial radiotherapy and atezolizumab in non-small cell lung cancer: An analysis of individual patient data from seven prospective trials. Transl Lung Cancer Res. 13:126–138. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luo S, Li P, Zhang A, Meng L, Huang L, Wu X, Cheng H, Tu H and Gong X: G-CSF improving combined whole brain radiotherapy and immunotherapy prognosis of non-small cell lung cancer brain metastases. Int Immunopharmacol. 130:1117052024. View Article : Google Scholar : PubMed/NCBI | |
Vanneste BGL, Van Limbergen EJ, Dubois L, Samarska IV, Wieten L, Aarts MJB, Marcelissen T and De Ruysscher D: Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology. 9:18327602020. View Article : Google Scholar : PubMed/NCBI | |
Bendavid J and Modesto A: Radiation therapy and antiangiogenic therapy: Opportunities and challenges. Cancer Radiother. 26:962–967. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Ren H and Fu J: Treatment of radiation-induced brain necrosis. Oxid Med Cell Longev. 2021:47935172021. View Article : Google Scholar : PubMed/NCBI | |
Król K, Mazur A, Stachyra-Strawa P and Grzybowska-Szatkowska L: Non-Small cell lung cancer treatment with molecularly targeted therapy and concurrent radiotherapy-A review. Int J Mol Sci. 24:58582023. View Article : Google Scholar : PubMed/NCBI | |
Hsu HW, Wall NR, Hsueh CT, Kim S, Ferris RL, Chen CS and Mirshahidi S: Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol. 50:19–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lévy C, Allouache D, Lacroix J, Dugué AE, Supiot S, Campone M, Mahe M, Kichou S, Leheurteur M, Hanzen C, et al: REBECA: A phase I study of bevacizumab and whole-brain radiation therapy for the treatment of brain metastasis from solid tumours. Ann Oncol. 25:2351–2356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, He J, Cai L, Lai M, Hu Q, Ren C, Wen L, Wang J, Zhou J, Zhou Z, et al: Bevacizumab as a treatment for radiation necrosis following stereotactic radiosurgery for brain metastases: Clinical and radiation dosimetric impacts. Ann Palliat Med. 10:2018–2026. 2021. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Zhao Z, Arooj S and Liao G: Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: A systematic review & meta-analysis. BMC Cancer. 21:1672021. View Article : Google Scholar : PubMed/NCBI | |
Han B, Li K, Wang Q, Zhang L, Shi J, Wang Z, Cheng Y, He J, Shi Y, Zhao Y, et al: Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: The ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 4:1569–1575. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han D, Zhang J, Bao Y, Liu L, Wang P and Qian D: Anlotinib enhances the antitumor immunity of radiotherapy by activating cGAS/STING in non-small cell lung cancer. Cell Death Discov. 8:4682022. View Article : Google Scholar : PubMed/NCBI | |
Dirkx AE, oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, Dings RP, Kwee L, Mayo KH, Wagstaff J, Bouma-ter Steege JC and Griffioen AW: Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J. 20:621–630. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tran TT, Caulfield J, Zhang L, Schoenfeld D, Djureinovic D, Chiang VL, Oria V, Weiss SA, Olino K, Jilaveanu LB and Kluger HM: Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI Insight. 8:e1573472023. View Article : Google Scholar : PubMed/NCBI | |
Ramadan WS, Zaher DM, Altaie AM, Talaat IM and Elmoselhi A: Potential therapeutic strategies for lung and breast cancers through understanding the anti-angiogenesis resistance mechanisms. Int J Mol Sci. 21:5652020. View Article : Google Scholar : PubMed/NCBI | |
Qi S, Deng S, Lian Z and Yu K: Novel drugs with high efficacy against tumor angiogenesis. Int J Mol Sci. 23:69342022. View Article : Google Scholar : PubMed/NCBI | |
Fakhrejahani E and Toi M: Antiangiogenesis therapy for breast cancer: An update and perspectives from clinical trials. Jpn J Clin Oncol. 44:197–207. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu LC and Zhang WD: Clinical trials of antiangiogenesis therapy on gastric cancer. Gastroenterol Res. 1:14–19. 2008. | |
Ribatti D, Vacca A, Nico B, Sansonno D and Dammacco F: Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. Cancer Treat Rev. 32:437–444. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Giantonio BJ, Levy DE, O'Dwyer PJ, Meropol NJ, Catalano PJ and Benson AB III; Eastern Cooperative Oncology Group, : A phase II study of high-dose bevacizumab in combination with irinotecan, 5-fluorouracil, leucovorin, as initial therapy for advanced colorectal cancer: Results from the eastern cooperative oncology group study E2200. Ann Oncol. 17:1399–1403. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Liu X, Yang S, Zhang X and Shi Y: Clinical response to apatinib monotherapy in advanced non-small cell lung cancer. Asia Pac J Clin Oncol. 14:264–269. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ren S, He J, Fang Y, Chen G, Ma Z, Chen J, Guo R, Lin X, Yao Y, Wu G, et al: Camrelizumab plus apatinib in treatment-naive patients with advanced nonsquamous NSCLC: A multicenter, open-label, single-arm, phase 2 trial. JTO Clin Res Rep. 3:1003122022.PubMed/NCBI | |
Zhou C, Wang Y, Zhao J, Chen G, Liu Z, Gu K, Huang M, He J, Chen J, Ma Z, et al: Efficacy and biomarker analysis of camrelizumab in combination with apatinib in patients with advanced nonsquamous NSCLC previously treated with chemotherapy. Clin Cancer Res. 27:1296–1304. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ou DL, Chen CW, Hsu CL, Chung CH, Feng ZR, Lee BS, Cheng AL, Yang MH and Hsu C: Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J Immunothera Cancer. 9:e0016572021. View Article : Google Scholar | |
Huang G and Chen L: Discrepancies between antiangiogenic and antitumor effects of recombinant human endostatin. Cancer Biother Radiopharm. 24:589–596. 2009.PubMed/NCBI | |
Rani V and Prabhu A: Combining angiogenesis inhibitors with radiation: Advances and challenges in cancer treatment. Curr Pharm Des. 27:919–931. 2021. View Article : Google Scholar : PubMed/NCBI | |
Riesterer O: Angiogenesis inhibitors and radiotherapy. Praxis (Bern 1994). 101:1031–1037. 2012.(In German). View Article : Google Scholar : PubMed/NCBI | |
Sun X, Deng L and Lu Y: Challenges and opportunities of using stereotactic body radiotherapy with anti-angiogenesis agents in tumor therapy. Chin J Cancer Res. 30:147–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park I, Yang H, Park JS, Koh GY and Choi EK: VEGF-Grab enhances the efficacy of radiation therapy by blocking VEGF-A and treatment-induced PlGF. Int J Radiat Oncol Biol Phys. 102:609–618. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CY, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF and Davidoff AM: Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res. 13:3942–3950. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Xue J, Zhou L, Lan J, He J, Na F, Yang L, Deng L and Lu Y: Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells. Cancer Lett. 365:79–88. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li L, Feng M, Xu P, Wu YL, Yin J, Huang Y, Tan MY and Jinyi L: Stereotactic radiosurgery with whole brain radiotherapy combined with bevacizumab in the treatment of brain metastases from NSCLC. Int J Neurosci. 133:334–341. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen YL, Huang AP, Wang CC, Chen HY, Chen YF, Xiao F, Lu SL, Cheng JC and Hsu FM: Peri-radiosurgical administration of bevacizumab improves radiographic response to single and fractionated stereotactic radiosurgery for large brain metastasis. J Neurooncol. 153:455–465. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Sun J, Xu M, Wang Y, Liu G and Jiang A: The value of anlotinib in the treatment of intractable brain edema: Two case reports. Front Oncol. 11:6178032021. View Article : Google Scholar : PubMed/NCBI | |
Fan P, Qiang H, Liu Z, Zhao Q, Wang Y, Liu T, Wang X, Chu T, Huang Y, Xu W and Qin S: Effective low-dose Anlotinib induces long-term tumor vascular normalization and improves anti-PD-1 therapy. Front Immunol. 13:9379242022. View Article : Google Scholar : PubMed/NCBI | |
Li PJ, Lai SZ, Jin T, Ying HJ, Chen YM, Zhang P, Hang QQ, Deng H, Wang L, Feng JG, et al: Radiotherapy opens the blood-brain barrier and synergizes with anlotinib in treating glioblastoma. Radiother Oncol. 183:1096332023. View Article : Google Scholar : PubMed/NCBI | |
He L, Pi Y, Li Y, Wu Y, Jiang J, Rong X, Cai J, Yue Z, Cheng J, Li H, et al: Efficacy and safety of apatinib for radiation-induced brain injury among patients with head and neck cancer: An open-label, single-arm, phase 2 study. Int J Radiat Oncol Biol Phys. 113:796–804. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Yang M, Du X, Peng H, Yang Y, Wang J and Zhang Y: Multifunctional nanoplatform based on sunitinib for synergistic phototherapy and molecular targeted therapy of hepatocellular carcinoma. Micromachines (Basel). 14:6132023. View Article : Google Scholar : PubMed/NCBI | |
Rahma OE and Hodi FS: The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 25:5449–5457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Chen Y, Tan S, Wu S, Huang Y, Fu S, Luo F and He J: The research progress of antiangiogenic therapy, immune therapy and tumor microenvironment. Front Immunol. 13:8028462022. View Article : Google Scholar : PubMed/NCBI | |
Kusmartsev S, Eruslanov E, Kübler H, Tseng T, Sakai Y, Su Z, Kaliberov S, Heiser A, Rosser C, Dahm P, et al: Oxidative stress regulates expression of VEGFR1 in myeloid cells: Link to tumor-induced immune suppression in renal cell carcinoma. J Immunol. 181:346–353. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zafar MI, Zheng J, Kong W, Ye X, Gou L, Regmi A and Chen LL: The role of vascular endothelial growth factor-B in metabolic homoeostasis: Current evidence. Biosci Rep. 37:BSR201710892017. View Article : Google Scholar : PubMed/NCBI | |
Bourhis M, Palle J, Galy-Fauroux I and Terme M: Direct and indirect modulation of T cells by VEGF-A counteracted by anti-angiogenic treatment. Front Immunol. 12:6168372021. View Article : Google Scholar : PubMed/NCBI | |
Szebeni GJ, Vizler C, Kitajka K and Puskas LG: Inflammation and cancer: Extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediators Inflamm. 2017:92940182017. View Article : Google Scholar : PubMed/NCBI | |
Liu QP, Chen YY, An P, Rahman K, Luan X and Zhang H: Natural products targeting macrophages in tumor microenvironment are a source of potential antitumor agents. Phytomedicine. 109:1546122023. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, et al: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proce Natil Acad Sci USA. 109:17561–17566. 2012. View Article : Google Scholar : PubMed/NCBI | |
Swed B, Ryan K, Gandarilla O, Shah MA and Brar G: Favorable response to second-line atezolizumab and bevacizumab following progression on nivolumab in advanced hepatocellular carcinoma: A case report demonstrating that anti-VEGF therapy overcomes resistance to checkpoint inhibition. Medicine (Baltimore). 100:e264712021. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Gao J, Di W and Wu X: Anti-angiogenesis therapy overcomes the innate resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models. Cancer Immunol Immunother. 69:1781–1799. 2020. View Article : Google Scholar : PubMed/NCBI | |
Manegold C, Dingemans AC, Gray JE, Nakagawa K, Nicolson M, Peters S, Reck M, Wu YL, Brustugun OT, Crinò L, et al: The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol. 12:194–207. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Kim BYS, Chan CK, Hahn SM, Weissman IL and Jiang W: Improving immune-vascular crosstalk for cancer immunotherapy. Nat Rev Immunol. 18:195–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yaguchi T, Sumimoto H, Kudo-Saito C, Tsukamoto N, Ueda R, Iwata-Kajihara T, Nishio H, Kawamura N and Kawakami Y: The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol. 93:294–300. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Liu Y and Wang Y: PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist. 24 (Suppl 1):S31–S41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Horvath L, Thienpont B, Zhao L, Wolf D and Pircher A: Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC)-novel approaches and future outlook. Mol Cancer. 19:1412020. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Gan C, Yu S, Yao S, Li W and Cheng H: Analysis of immune resistance mechanisms in TNBC: Dual effects inside and outside the tumor. Clin Breast Cancer. 24:e91–e102. 2024. View Article : Google Scholar : PubMed/NCBI | |
Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A and Kaczmarek M: Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 12:6563642021. View Article : Google Scholar : PubMed/NCBI | |
Dobosz P, Stępień M, Golke A and Dzieciątkowski T: Challenges of the immunotherapy: Perspectives and limitations of the immune checkpoint inhibitor treatment. Int J Mol Sci. 23:28472022. View Article : Google Scholar : PubMed/NCBI | |
Kudo-Saito C, Ishida A, Shouya Y, Teramoto K, Igarashi T, Kon R, Saito K, Awada C, Ogiwara Y and Toyoura M: Blocking the FSTL1-DIP2A axis improves anti-tumor immunity. Cell Rep. 24:1790–1801. 2018. View Article : Google Scholar : PubMed/NCBI | |
Codony-Servat J and Rosell R: Cancer stem cells and immunoresistance: Clinical implications and solutions. Transl Lung Cancer Res. 4:689–703. 2015.PubMed/NCBI | |
Wu L, Cheng D, Yang X, Zhao W, Fang C, Chen R and Ji M: M2-TAMs promote immunoresistance in lung adenocarcinoma by enhancing METTL3-mediated m6A methylation. Ann Transl Med. 10:13802022. View Article : Google Scholar : PubMed/NCBI | |
Khouzam RA, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, et al: Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol. 97:104–123. 2023. View Article : Google Scholar : PubMed/NCBI | |
Larroquette M, Domblides C, Lefort F, Lasserre M, Quivy A, Sionneau B, Bertolaso P, Gross-Goupil M, Ravaud A and Daste A: Combining immune checkpoint inhibitors with chemotherapy in advanced solid tumours: A review. Eur J Cancer. 158:47–62. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Liu P, Zhao K, Zhao W and Zhang X: The immune microenvironment in brain metastases of non-small cell lung cancer. Front Oncol. 11:6988442021. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Kang K, Han C, Wang L, Wang Z and Zhao A: Single-Cell profiling comparisons of tumor microenvironment between primary advanced lung adenocarcinomas and brain metastases and machine learning algorithms in predicting immunotherapeutic responses. Biomolecules. 13:1852023. View Article : Google Scholar : PubMed/NCBI | |
Hulsbergen AFC, Mammi M, Nagtegaal SHJ, Lak AM, Kavouridis V, Smith TR, Iorgulescu JB, Mekary RA, Verhoeff JJC, Broekman MLD and Phillips JG: Programmed death receptor ligand one expression may independently predict survival in patients with non-small cell lung carcinoma brain metastases receiving immunotherapy. Int J Radiat Oncol Biol Phys. 108:258–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hargadon KM, Johnson CE and Williams CJ: Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 62:29–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 31:2078–2092. 2018. View Article : Google Scholar | |
Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, Hermes B, Şenler FC, Csőszi T, Fülöp A, et al: Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 379:2040–2051. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Zhang S, Xu H, Yang G, Xu F, Yang L, Chen D, An G and Wang Y: Organ-specific immune checkpoint inhibitor treatment in lung cancer: A systematic review and meta-analysis. BMJ Open. 13:e0594572023. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Ren F and Meng X: Efficacy of immune checkpoint inhibitor therapy in EGFR mutation-positive patients with NSCLC and brain metastases who have failed EGFR-TKI therapy. Front Immunol. 13:9559442022. View Article : Google Scholar : PubMed/NCBI | |
Chu X, Niu L, Xiao G, Peng H, Deng F, Liu Z, Wu H, Yang L, Tan Z, Li Z and Zhou R: The long-term and short-term efficacy of immunotherapy in non-small cell lung cancer patients with brain metastases: A systematic review and meta-analysis. Front Immunol. 13:8754882022. View Article : Google Scholar : PubMed/NCBI | |
Shepard MJ, Xu Z, Donahue J, Muttikkal TJ, Cordeiro D, Hansen L, Mohammed N, Gentzler RD, Larner J, Fadul CE and Sheehan JP: Stereotactic radiosurgery with and without checkpoint inhibition for patients with metastatic non-small cell lung cancer to the brain: A matched cohort study. J Neurosurg. 133:685–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khalifa J, Amini A, Popat S, Gaspar LE and Faivre-Finn C; International Association for the Study of Lung Cancer Advanced Radiation Technology Committee, : Brain metastases from NSCLC: Radiation therapy in the era of targeted therapies. J Thorac Oncol. 11:1627–1643. 2016. View Article : Google Scholar : PubMed/NCBI | |
Porte J, Saint-Martin C, Frederic-Moreau T, Massiani MA, Bozec L, Cao K, Verrelle P, Otz J, Jadaud E, Minsat M, et al: Efficacy and safety of combined brain stereotactic radiotherapy and immune checkpoint inhibitors in non-small-cell lung cancer with brain metastases. Biomedicines. 10:22492022. View Article : Google Scholar : PubMed/NCBI | |
Scoccianti S, Olmetto E, Pinzi V, Osti MF, Di Franco R, Caini S, Anselmo P, Matteucci P, Franceschini D, Mantovani C, et al: Immunotherapy in association with stereotactic radiotherapy for non-small cell lung cancer brain metastases: Results from a multicentric retrospective study on behalf of AIRO. Neuro Oncol. 23:1750–1764. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gagliardi F, De Domenico P, Snider S, Roncelli F, Pompeo E, Barzaghi LR, Bulotta A, Gregorc V, Lazzari C, Cascinu S, et al: Role of stereotactic radiosurgery for the treatment of brain metastasis in the era of immunotherapy: A systematic review on current evidences and predicting factors. Crit Rev Oncol Hematol. 165:1034312021. View Article : Google Scholar : PubMed/NCBI | |
Enright TL, Witt JS, Burr AR, Yadav P, Leal T and Baschnagel AM: Combined immunotherapy and stereotactic radiotherapy improves neurologic outcomes in patients with non-small-cell lung cancer brain metastases. Clin Lung Cancer. 22:110–119. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dohm AE, Tang JD, Mills MN, Liveringhouse CL, Sandoval ML, Perez BA, Robinson TJ, Creelan BC, Gray JE, Etame AB, et al: Clinical outcomes of non-small cell lung cancer brain metastases treated with stereotactic radiosurgery and immune checkpoint inhibitors, EGFR tyrosine kinase inhibitors, chemotherapy and immune checkpoint inhibitors, or chemotherapy alone. J Neurosurg. 138:1600–1607. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo T, Chu L, Chu X, Yang X, Li Y, Zhou Y, Xu D, Zhang J, Wang S, Hu J, et al: Brain metastases, patterns of intracranial progression, and the clinical value of upfront cranial radiotherapy in patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors. Transl Lung Cancer Res. 11:173–187. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Jeong H, Park JE, Kim HS, Kim YH, Lee DH, Kim SW, Lee JC, Choi CM and Yoon S: Central nervous systemic efficacy of immune checkpoint inhibitors and concordance between intra/extracranial response in non-small cell lung cancer patients with brain metastasis. J Cancer Res Clin Oncol. 149:4523–4532. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo F and Cui J: Anti-angiogenesis: Opening a new window for immunotherapy. Life Sci. 258:1181632020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Yan J and Liu B: Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol. 9:9782018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Li L, Jiang Z, Wang B and Pan Z: Anlotinib optimizes anti-tumor innate immunity to potentiate the therapeutic effect of PD-1 blockade in lung cancer. Cancer Immunol Immunother. 69:2523–2532. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Fu Y, Xie Q, Zhu B, Wang J and Zhang B: Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front Immunol. 11:19562020. View Article : Google Scholar : PubMed/NCBI | |
Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E and Bergers G: Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep. 11:577–591. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song JQ, Wang X, Zeng ZM, Liang PA, Zhong CY and Liu AW: Efficacy of PD-1 inhibitors combined with anti-angiogenic therapy in driver gene mutation negative non-small-cell lung cancer with brain metastases. Discov Med. 35:321–331. 2023. View Article : Google Scholar : PubMed/NCBI | |
Altan M, Wang Y, Song J, Welsh J, Tang C, Guha-Thakurta N, Blumenschein GR, Carter BW, Wefel JS, Ghia AJ, et al: Nivolumab and ipilimumab with concurrent stereotactic radiosurgery for intracranial metastases from non-small cell lung cancer: Analysis of the safety cohort for non-randomized, open-label, phase I/II trial. J Immunother Cancer. 11:e0068712023. View Article : Google Scholar : PubMed/NCBI | |
Cho A, Untersteiner H, Hirschmann D, Shaltout A, Göbl P, Dorfer C, Rössler K, Marik W, Kirchbacher K, Kapfhammer I, et al: Gamma knife radiosurgery for brain metastases in non-small cell lung cancer patients treated with immunotherapy or targeted therapy. Cancers (Basel). 12:36682020. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Zhang Q, Feng S, Li C, Wang L, Zhao X, Yang Z, Li Z, Luo H, Liu R, et al: Safety and efficacy of PD-1/PD-L1 inhibitors combined with radiotherapy in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Cancer Med. 10:1222–1239. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma K, Guo Q and Li X: Efficacy and safety of combined immunotherapy and antiangiogenic therapy for advanced non-small cell lung cancer: A real-world observation study. BMC Pulm Med. 23:1752023. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Wang J, Pu X, Li J, Wang Q, Liu L, Xu Y, Xu L, Kong Y, Li K, et al: The efficacy and safety of immune checkpoint inhibitors combined with chemotherapy or anti-angiogenic therapy as a second-line or later treatment option for advanced non-small cell lung cancer: A retrospective comparative cohort study. Transl Lung Cancer Res. 11:2111–2124. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Li S, Liu J, Yang C, Zhang L, Bao H and Cheng Y: Comparative efficacy and safety of TKIs alone or in combination with antiangiogenic agents in advanced EGFR-mutated NSCLC as the first-line treatment: A systematic review and meta-analysis. Clin Lung Cancer. 23:159–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Ni T, Deng R, Li Y, Zhong Q, Tang F, Zhang Q, Fang C, Xue Y, Zha Y and Zhang Y: Safety and efficacy of radiotherapy/chemoradiotherapy combined with immune checkpoint inhibitors for non-small cell lung cancer: A systematic review and meta-analysis. Front Immunol. 14:10655102023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen Y, Hu F, Qiang H, Chang Q, Qian J, Shen Y, Cai Y and Chu T: Comparison of the efficacy and safety in the treatment strategies between chemotherapy combined with antiangiogenic and with immune checkpoint inhibitors in advanced non-small cell lung cancer patients with negative PD-L1 expression: A network meta-analysis. Front Oncol. 12:10015032022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Cui L, Wang J, Zhao W and Teng Y: Aspirin boosts the synergistic effect of EGFR/p53 inhibitors on lung cancer cells by regulating AKT/mTOR and p53 pathways. Cell Biochem Funct. 42:e39022024. View Article : Google Scholar : PubMed/NCBI | |
Qian C, Liu C, Liu W, Zhou R and Zhao L: Targeting vascular normalization: A promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol. 14:12915302023. View Article : Google Scholar : PubMed/NCBI | |
Zhou S and Zhang H: Synergies of targeting angiogenesis and immune checkpoints in cancer: From mechanism to clinical applications. Anticancer Agents Med Chem. 20:768–776. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yuan M, Zhai Y, Men Y, Zhao M, Sun X, Ma Z, Bao Y, Yang X, Sun S, Liu Y, et al: Anlotinib enhances the antitumor activity of high-dose irradiation combined with anti-PD-L1 by potentiating the tumor immune microenvironment in murine lung cancer. Oxid Med Cell Longev. 2022:54794912022. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Zhao R, Wen J, Zhang X, Wu S, Fang J, Ma J, Zheng W, Zhang X, Lu Z, et al: Anlotinib reduces the suppressive capacity of monocytic myeloid-derived suppressor cells and potentiates the immune microenvironment normalization window in a mouse lung cancer model. Anticancer Drugs. 34:1018–1024. 2023. View Article : Google Scholar : PubMed/NCBI | |
Swamy K: Vascular normalization and immunotherapy: Spawning a virtuous cycle. Front Oncol. 12:10029572022. View Article : Google Scholar : PubMed/NCBI | |
Lee WS, Yang H, Chon HJ and Kim C: Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 52:1475–1485. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oliveira G and Wu CJ: Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer. 23:295–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
Charpentier M, Spada S, Van Nest SJ and Demaria S: Radiation therapy-induced remodeling of the tumor immune microenvironment. Semin Cancer Biol. 86:737–747. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xian F, Wu J, Zhong L and Xu G: Efficacy and safety of PD1/PDL1 inhibitors combined with radiotherapy and anti-angiogenic therapy for solid tumors: A systematic review and meta-analysis. Medicine (Baltimore). 102:e332042023. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhao Q, Wang Y, Wang Y, Zheng M, Ding X and Miao L: Efficacy and safety of anlotinib-containing regimens in advanced non-small cell lung cancer: A real-world study. Int J Gen Med. 16:4165–4179. 2023. View Article : Google Scholar : PubMed/NCBI | |
Long YY, Chen J, Xie Y, Wang Y, Wu YZ, Xv Y, Weng KG and Zhou W: Long-term survival with a combination of immunotherapy, anti-angiogenesis, and traditional radiotherapy in brain metastatic small cell lung cancer: A case report. Front Oncol. 13:12097582023. View Article : Google Scholar : PubMed/NCBI | |
Schettino C, Bareschino MA, Rossi A, Maione P, Sacco PC, Colantuoni G, Rossi E and Gridelli C: Targeting angiogenesis for treatment of NSCLC brain metastases. Curr Cancer Drug Targets. 12:289–299. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao RL, Song J, Sun L, Wu ZX, Yi XF, Zhang SL, Huang LT, Ma JT and Han CB: Efficacy and safety of combined immunotherapy and antiangiogenesis with or without chemotherapy for advanced non-small-cell lung cancer: A systematic review and pooled analysis from 23 prospective studies. Front Pharmacol. 13:9201652022. View Article : Google Scholar : PubMed/NCBI | |
Li D, Xu L, Ji J, Bao D, Hu J, Qian Y, Zhou Y, Chen Z, Li D, Li X, et al: Sintilimab combined with apatinib plus capecitabine in the treatment of unresectable hepatocellular carcinoma: A prospective, open-label, single-arm, phase II clinical study. Front Immunol. 13:9440622022. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Qi L, Wang X, Xu J, Liu Y, Mu L, Wang X, Bai L and Huang J: Phase II clinical trial using camrelizumab combined with apatinib and chemotherapy as the first-line treatment of advanced esophageal squamous cell carcinoma. Cancer Commun (Lond). 40:711–720. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lai S, Li P, Liu X, Liu G, Xie T, Zhang X, Wang X, Huang J, Tang Y, Liu Z, et al: Efficacy and safety of anlotinib combined with the STUPP regimen in patients with newly diagnosed glioblastoma: A multicenter, single-arm, phase II trial. Cancer Biol Med. 21:433–444. 2024.PubMed/NCBI | |
Theelen W, Chen D, Verma V, Hobbs BP, Peulen HMU, Aerts J, Bahce I, Niemeijer ALN, Chang JY, de Groot PM, et al: Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Respir Med. 9:467–475. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu D, Yu H, Ding N, Xu J, Qian P, Zhu J, Jiang M, Tao H and Zhu X: A phase II study of anlotinib plus whole brain radiation therapy for patients with NSCLC with multiple brain metastases. Ann Med. 56:24016182024. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yu W, Xie F, Luo H, Liu Z, Lv W, Shi D, Yu D, Gao P, Chen C, et al: Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer. Nat Commun. 14:82023. View Article : Google Scholar : PubMed/NCBI | |
Zhai Y, Ma H, Hui Z, Zhao L, Li D, Liang J, Wang X, Xu L, Chen B, Tang Y, et al: HELPER study: A phase II trial of continuous infusion of endostar combined with concurrent etoposide plus cisplatin and radiotherapy for treatment of unresectable stage III non-small-cell lung cancer. Radiother Oncol. 131:27–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brown PD, Jaeckle K, Ballman KV, Farace E, Cerhan JH, Anderson SK, Carrero XW, Barker FG II, Deming R, Burri SH, et al: Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: A randomized clinical trial. JAMA. 316:401–409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abdallah M, Voland R, Decamp M, Flickinger J, Pacioles T, Jamil M, Silbermins D, Shenouda M, Valsecchi M, Bir A, et al: Evaluation of anti-angiogenic therapy combined with immunotherapy and chemotherapy as a strategy to treat locally advanced and metastatic non-small-cell lung cancer. Cancers (Basel). 16:42072024. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, et al: Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 7:387–401. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Xu Y, Huang Z, Yu X, Hong W, Li H, Xu X, Lu H, Xie F, Chen J, et al: Sintilimab plus anlotinib as second- or third-line therapy in metastatic non-small cell lung cancer with uncommon epidermal growth factor receptor mutations: A prospective, single-arm, phase II trial. Cancer Med. 12:19460–19470. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Chen P, Cui B, Yao Y, Wang J, Zhou T and Wang L: Benmelstobart plus anlotinib in patients with EGFR-positive advanced NSCLC after failure of EGFR TKIs therapy: A phase I/II study. Signal Transduct Targeted Ther. 9:2832024. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Chen G, Yin Y, Chen X, Nie R and Chen Y: First-line immune checkpoint inhibitors in low programmed death-ligand 1-expressing population. Front Pharmacol. 15:13776902024. View Article : Google Scholar : PubMed/NCBI | |
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H and Florczak A: Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother. 180:1175852024. View Article : Google Scholar : PubMed/NCBI | |
Patel A, Dong T, Ansari S, Cohen-Gadol A, Watson GA, Moraes FY, Nakamura M, Murovic J, Chang SD, Hatiboglu MA, et al: Toxicity of radiosurgery for brainstem metastases. World Neurosurg. 119:e757–e764. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen WC, Baal UH, Baal JD, Pai JS, Boreta L, Braunstein SE and Raleigh DR: Efficacy and safety of stereotactic radiosurgery for brainstem metastases: A systematic review and meta-analysis. JAMA Oncol. 7:1033–1040. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shaw MG and Ball DL: Treatment of brain metastases in lung cancer: Strategies to avoid/reduce late complications of whole brain radiation therapy. Curr Treat Options Oncol. 14:553–567. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang TJ, Wijetunga NA, Yamada J, Wolden S, Mehallow M, Goldman DA, Zhang Z, Young RJ, Kris MG, Yu HA, et al: Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro Oncol. 23:134–143. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mehmi I and Hamid O: Immunotherapy of cancer in the era of checkpoint inhibitor. Clin Exp Metastasis. 39:231–237. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rossi G, Russo A, Tagliamento M, Tuzi A, Nigro O, Vallome G, Sini C, Grassi M, Dal Bello MG, Coco S, et al: Precision medicine for NSCLC in the era of immunotherapy: New biomarkers to select the most suitable treatment or the most suitable patient. Cancers (Basel). 12:11252020. View Article : Google Scholar : PubMed/NCBI | |
Chang K, Jiao Y, Zhang B, Hou L, He X, Wang D, Li D, Li R, Wang Z, Fan P and Zhang J: MGP(+) and IDO1(+) tumor-associated macrophages facilitate immunoresistance in breast cancer revealed by single-cell RNA sequencing. Int Immunopharmacol. 131:1118182024. View Article : Google Scholar : PubMed/NCBI | |
Tímár J and Ladányi A: Immunogenomic aspects of tumor progression. Magy Onkol. 63:173–182. 2019.(In Hungarian). PubMed/NCBI | |
Albesiano E, Han JE and Lim M: Mechanisms of local immunoresistance in glioma. Neurosurg Clin N Am. 21:17–29. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cabezón-Gutiérrez L, Custodio-Cabello S, Palka-Kotlowska M, Alonso-Viteri S and Khosravi-Shahi P: Biomarkers of immune checkpoint inhibitors in non-small cell lung cancer: Beyond PD-L1. Clin Lung Cancer. 22:381–389. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou S and Yang H: Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Front Immunol. 14:11294652023. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Zeng H, Cheng R, Tian P and Li Y: Advances of immunotherapy resistance and coping strategies in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 26:66–77. 2023.PubMed/NCBI | |
Zhang Y and Brekken RA: Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol. 111:1269–1286. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X and Luo K: Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv Sci (Weinh). 9:e22017342022. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C, Huang J, Wei Q and Zhang T: Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct Target Ther. 8:2052023. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Liu J, Zhou H, Shi M, Sun J, Zhao S, Chen G, Zhang Y, Zhou T, Ma Y, et al: Classification of tumor immune microenvironment according to programmed death-ligand 1 expression and immune infiltration predicts response to immunotherapy plus chemotherapy in advanced patients with NSCLC. J Thorac Oncol. 18:869–881. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu S, Yang Z, Algazi AP, Lomeli SH, Wang Y, Othus M, Hong A, Wang X, Randolph CE, et al: Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell. 39:1375–1387.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Caetano MS, Younes AI, Barsoumian HB, Quigley M, Menon H, Gao C, Spires T, Reilly TP, Cadena AP, Cushman TR, et al: Triple therapy with MerTK and PD1 inhibition plus radiotherapy promotes abscopal antitumor immune responses. Clin Cancer Res. 25:7576–7584. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yeung MY, McGrath M and Najafian N: The emerging role of the TIM molecules in transplantation. Am J Transplant. 11:2012–2019. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Tong F, Peng L, Huang Y, Yin P, Feng Y, Cheng S, Wang J and Dong X: Efficacy and safety of recombinant human endostatin combined with whole-brain radiation therapy in patients with brain metastases from non-small cell lung cancer. Radiother Oncol. 174:44–51. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang RF, Yu B, Zhang RQ, Wang XH, Li C, Wang P, Zhang Y, Han B, Gao XX, Zhang L, et al: Bevacizumab and gefitinib enhanced whole-brain radiation therapy for brain metastases due to non-small-cell lung cancer. Braz J Med Biol Res. 51:e60732017. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Chen K, Xu Y, Li H, Huang Z, Lu H, Huang D, Yu S, Han N, Gong L, et al: Brain radiotherapy combined with camrelizumab and platinum-doublet chemotherapy for previously untreated advanced non-small-cell lung cancer with brain metastases (C-Brain): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 26:74–84. 2025. View Article : Google Scholar : PubMed/NCBI |