
N6‑methyladenosine in cervical carcinogenesis: Mechanistic insights and therapeutic perspectives (Review)
- Authors:
- Man Xu
- Fanglei Yang
- Huan Chen
- Feiyun Jiang
-
Affiliations: Department of Gynecology, The Second People's Hospital of Wuhu City, Wuhu, Anhui 241000, P.R. China - Published online on: July 14, 2025 https://doi.org/10.3892/ol.2025.15188
- Article Number: 442
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Weaver C, Nam A, Settle C, Overton M, Giddens M, Richardson KP, Piver R, Mysona DP, Rungruang B, Ghamande S, et al: Serum proteomic signatures in cervical cancer: Current status and future directions. Cancers (Basel). 16:16292024. View Article : Google Scholar : PubMed/NCBI | |
Tantengco OAG, Nakura Y, Yoshimura M, Nishiumi F, Llamas-Clark EF and Yanagihara I: Co-infection of human papillomavirus and other sexually transmitted bacteria in cervical cancer patients in the Philippines. Gynecol Oncol Rep. 40:1009432022. View Article : Google Scholar : PubMed/NCBI | |
Brotherton JML, Vajdic CM and Nightingale C: The socioeconomic burden of cervical cancer and its implications for strategies required to achieve the WHO elimination targets. Expert Rev Pharmacoecon Outcomes Res. 25:1–20. 2025. View Article : Google Scholar : PubMed/NCBI | |
Goldstein A, Gersh M, Skovronsky G and Moss C: The future of cervical cancer screening. Int J Womens Health. 16:1715–1731. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nartey Y, Amo-Antwi K, Hill PC, Dassah ET, Asmah RH, Nyarko KM, Agambire R, Konney TO, Yarney J, Damale N and Cox B: Human papillomavirus genotype distribution among women with and without cervical cancer: Implication for vaccination and screening in Ghana. PLoS One. 18:e02804372023. View Article : Google Scholar : PubMed/NCBI | |
Fan P, Li X, Feng Y, Cai H, Dong D, Peng Y, Yao X, Guo Y, Ma M, Dong T and Wang R: PD-1 expression status on CD8+ tumour infiltrating lymphocytes associates with survival in cervical cancer. Front Oncol. 11:6787582021. View Article : Google Scholar : PubMed/NCBI | |
Braila AD, Poalelungi CV, Albu CC, Damian CM, Dira LM, Banateanu AM and Bogdan-Andreescu CF: The relationship between cervicovaginal infection, human papillomavirus infection and cervical intraepithelial neoplasia in Romanian women. Diseases. 13:182025. View Article : Google Scholar : PubMed/NCBI | |
Meghani K, Puri P, Bazzett-Matabele L, Vuylsteke P, Luckett R, Monare B, Chiyapo S, Ketlametswe R, Ralefala TB, Bvochora-Nsingo M, et al: Significance of HIV status in cervical cancer patients receiving curative chemoradiation therapy, definitive radiation alone, or palliative radiation in Botswana. Cancer. 130:2462–2471. 2024. View Article : Google Scholar : PubMed/NCBI | |
Teshome R, Yang I, Woldetsadik E, Girma E, Higgins M and Wells J: Survival status and predictors among women with advanced stage of cervical cancer. Int J Womens Health. 16:605–617. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wen M, Yi N, Mijiti B, Zhao S and Shen G: N(6)-methyladenosine (m6A) reader HNRNPA2B1 accelerates the cervical cancer cells aerobic glycolysis. J Bioenerg Biomembr. 56:657–668. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Ju M, Zheng X, Jiang Y, Yu X, Pan B, Luo R, Jia W and Zheng M: Methyltransferase-like 3 promotes cervical cancer metastasis by enhancing cathepsin L mRNA stability in an N6-methyladenosine-dependent manner. Cancer Sci. 114:837–854. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Zhao J, Tian P, Xu Z, Wang R, Chen W, Wang X, Wan S, Yang Y and Zhang H: BaP/BPDE exposure causes human trophoblast cell dysfunctions and induces miscarriage by up-regulating lnc-HZ06-regulated IL1B. J Hazard Mater. 476:1347412024. View Article : Google Scholar : PubMed/NCBI | |
Dai M, Huang W, Huang X, Ma C, Wang R, Tian P, Chen W, Zhang Y, Mi C and Zhang H: BPDE, the migration and invasion of human trophoblast cells, and occurrence of miscarriage in humans: Roles of a novel lncRNA-HZ09. Environ Health Perspect. 131:170092023. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Xiao P, Tang J, Wang R, Wang X, Wang F, Ruan J, Yu S, Tang J, Huang R and Zhao X: m6A Regulator-Mediated tumour infiltration and methylation modification in cervical cancer microenvironment. Front Immunol. 13:8886502022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Kong W, Zhao X, Han C, Liu T, Li J and Song D: N6-Methyladenosine-Related lncRNAs as potential biomarkers for predicting prognoses and immune responses in patients with cervical cancer. BMC Genom Data. 23:82022. View Article : Google Scholar : PubMed/NCBI | |
Condic M, Ralser DJ, Klumper N, Ellinger J, Qureischi M, Egger EK, Kristiansen G, Mustea A and Thiesler T: Comprehensive analysis of N6-Methyladenosine (m6A) writers, erasers, and readers in cervical cancer. Int J Mol Sci. 23:71652022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li Z, Kong B, Song C, Cong J, Hou J and Wang S: Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget. 8:98918–98930. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Gu L, Xiao J and Jin F: Knockdown of RBM15 inhibits tumor progression and the JAK-STAT signaling pathway in cervical cancer. BMC Cancer. 23:6842023. View Article : Google Scholar : PubMed/NCBI | |
Yu R, Wei Y, He C, Zhou P, Yang H, Deng C, Liu R, Wu P, Gao Q and Cao C: Integrative analyses of m6A regulators identify that METTL3 is associated with HPV status and immunosuppressive microenvironment in HPV-related cancers. Int J Biol Sci. 18:3874–3887. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ji H, Zhang JA, Liu H, Li K, Wang ZW and Zhu X: Comprehensive characterization of tumor microenvironment and m6A RNA methylation regulators and its effects on PD-L1 and immune infiltrates in cervical cancer. Front Immunol. 13:9761072022. View Article : Google Scholar : PubMed/NCBI | |
Pu M, Xiao X, Lv S, Ran D, Huang Q, Zhou M, Lei Q, Kong L and Zhang Q: METTL3-dependent DLG2 inhibits the malignant progression of cervical cancer by inactivating the Hippo/YAP signaling. Hereditas. 162:92025. View Article : Google Scholar : PubMed/NCBI | |
Hou PX, Fan Q, Zhang Q, Liu JJ and Wu Q: M6A-induced transcription factor IRF5 contributes to the progression of cervical cancer by upregulating PPP6C. Clin Exp Pharmacol Physiol. 51:e138682024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li C, Deng Q, Ren X and Wang H: METTL3′s role in cervical cancer development through m6A modification. FASEB J. 38:e236932024. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Bai Y, Wang L, Xu Z, Zhang N, Wang W and Zhao H: METTL3 facilitates the progression of cervical cancer by m6A modification-mediated up-regulation of NEK2. Sci Rep. 14:244692024. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Shi H and Zheng W: METTL3 regulates the translation of oncogene Myc through m6A Modification and promotes the occurrence and development of cervical cancer. Discov Med. 36:1902–1910. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Wu F, Jia Y, Zhang X, Qi X, Jin Z, Hao T, Zhao J, Liu Z, Wang C, et al: RNA N(6)-methyladenosine modification mediates downregulation of NR4A1 to facilitate malignancy of cervical cancer. Cell Biosci. 12:2072022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xie G, Tian Y, Li W, Wu Y, Chen F, Lin Y, Lin X, Au SWN, Cao J, et al: RNA m6A methylation regulates dissemination of cancer cells by modulating expression and membrane localization of β-catenin. Mol Ther. 30:1578–1596. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ao K, Yin M, Lyu X, Xiao Y, Chen X, Zhong S, Wen X, Yuan J, Ye M, Zhang J, et al: METTL3-mediated HSPA9 m6A modification promotes malignant transformation and inhibits cellular senescence by regulating exosomal mortalin protein in cervical cancer. Cancer Lett. 587:2166582024. View Article : Google Scholar : PubMed/NCBI | |
Rui Y, Zhang H, Yu K, Qiao S, Gao C, Wang X, Yang W, Asadikaram G, Li Z, Zhang K, et al: N(6)-Methyladenosine regulates cilia elongation in cancer cells by modulating HDAC6 expression. Adv Sci (Weinh). 12:e24084882025. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhong Y, Cao G, Shi H, Liu Y, Li L, Yin P, Chen J, Xiao Z and Du B: METTL3 promotes cell cycle progression via m6A/YTHDF1-dependent regulation of CDC25B translation. Int J Biol Sci. 18:3223–3236. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Guo X, Li L, Gao Z, Su X, Ji M and Liu J: N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 11:9112020. View Article : Google Scholar : PubMed/NCBI | |
Liu HT, Zhao Y, Wang HC and Liu QL: METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer growth. Biochem Biophys Res Commun. 716:1500392024. View Article : Google Scholar : PubMed/NCBI | |
Du QY, Huo FC, Du WQ, Sun XL, Jiang X, Zhang LS and Pei DS: METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene. 41:4420–4432. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang YY, Ye LH, Zhao AQ, Gao WR, Dai N, Yin Y and Zhang X: M6A modification regulates tumor suppressor DIRAS1 expression in cervical cancer cells. Cancer Biol Ther. 25:23066742024. View Article : Google Scholar : PubMed/NCBI | |
Shen S, Jin H, Zhang X, Zhang Y, Li X, Yan W, Xie S, Yu B, Hu J, Liu H, et al: LINC00426, a novel m6A-regulated long non-coding RNA, induces EMT in cervical cancer by binding to ZEB1. Cell Signal. 109:1107882023. View Article : Google Scholar : PubMed/NCBI | |
Shen W, Zhu M, Wang Q, Zhou X, Wang J, Wang T and Zhang J: DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m6A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol. 19:751–763. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Ling K, Zhu Y, Deng L, Li Y and Liang Z: circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem Biophys Res Commun. 551:114–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Rui X, Han C, Wang C, Xu L and Jiang X: circRNF13, a novel N(6)-methyladenosine-modified circular RNA, enhances radioresistance in cervical cancer by increasing CXCL1 mRNA stability. Cell Death Discov. 9:2532023. View Article : Google Scholar : PubMed/NCBI | |
Han X, Xia L, Wu Y, Chen X and Wu X: m6A-modified circSTX6 as a key regulator of cervical cancer malignancy via SPI1 and IL6/JAK2/STAT3 pathways. Oncogene. 44:968–982. 2025. View Article : Google Scholar : PubMed/NCBI | |
Ji F, Lu Y, Chen S, Lin X, Yu Y, Zhu Y and Luo X: m6A methyltransferase METTL3-mediated lncRNA FOXD2-AS1 promotes the tumorigenesis of cervical cancer. Mol Ther Oncolytics. 22:574–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shen G, Li F, Wang Y, Huang Y, Aizezi G, Yuan J, Ma C and Lin C: New insights on the interaction between m6A modification and non-coding RNA in cervical squamous cell carcinoma. World J Surg Oncol. 21:252023. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Ma J, Han S, Li X, Guo H and Liu D: ZFAS1 exerts an oncogenic role via suppressing miR-647 in an m6A-dependent manner in cervical cancer. Onco Targets Ther. 13:11795–11806. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Luo G, Zhang S, Chen Y and Hu Y: Transcriptome sequencing analysis reveals miR-30c-5p promotes ferroptosis in cervical cancer and inhibits growth and metastasis of cervical cancer xenografts by targeting the METTL3/KRAS axis. Cell Signal. 117:1110682024. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Liang J, Lin S, Wang D, Xie Q, Lin Z and Yao T: N(6)-methyladenosine associated silencing of miR-193b promotes cervical cancer aggressiveness by targeting CCND1. Front Oncol. 11:6665972021. View Article : Google Scholar : PubMed/NCBI | |
Alasar AA, Saglam B, Vatansever IE and Akgul B: Expression patterns of m6A RNA methylation regulators under apoptotic conditions in various human cancer cell lines. Turk J Biol. 48:24–34. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zeng J, He S, Yang Y and Wang C: METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer. Cancer Biol Ther. 25:23494292024. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhao N, Ding X and Zhao J: METTL14-mediated m6A modification upregulates HOXB13 expression to activate NF-κB and exacerbate cervical cancer progression. Mol Cell Oncol. 11:24239862024. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Tang Y, Zhao J, Yang J, Chen Y, Gong Y, Meng S and Shu C: TRIM11 regulated by m6A modification promotes the progression of cervical cancer by PHLPP1 ubiquitination. Neoplasma. 70:659–669. 2023. View Article : Google Scholar : PubMed/NCBI | |
Geng F, Fan MJ, Li J, Liang SM, Li CY and Li N: Knockdown of METTL14 inhibits the growth and invasion of cervical cancer. Transl Cancer Res. 8:2307–2315. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Li Z, Luo X, Wang D, Zhou Y, Zhao J, Gao S, Yang Y, Fu W, Kong L and Sun T: piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m6A RNA methylation manner. J Transl Med. 20:512022. View Article : Google Scholar : PubMed/NCBI | |
Wang R and Tan W: RBM15-Mediated N6-Methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer. Crit Rev Eukaryot Gene Expr. 34:15–29. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Li C, Wei Q, Zhang E, Yang Y, Sha L and Wang D: RBM15 knockdown impairs the malignancy of cervical cancer by mediating m6A modification of decorin. Biochem Genet. 63:225–238. 2024. View Article : Google Scholar : PubMed/NCBI | |
Quan Y, Zhou M, Li J, Yang Y, Guo J, Tang T and Liu P: The m6A methyltransferase RBM15 affects tumor cell stemness and progression of cervical cancer by regulating the stability of lncRNA HEIH. Exp Cell Res. 436:1139242024. View Article : Google Scholar : PubMed/NCBI | |
Song Y and Wu Q: RBM15 m(6) A modification-mediated OTUB2 upregulation promotes cervical cancer progression via the AKT/mTOR signaling. Environ Toxicol. 38:2155–2164. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feng X and Shu L: The methyltransferase KIAA1429 potentiates cervical cancer tumorigenesis via modulating LARP1 mRNA m6A modification and stability. Histol Histopathol. 40:1095–1103. 2024.PubMed/NCBI | |
Wang M, Wang Z, Zou X, Yang D and Xu K: The regulatory role of KIAA1429 in epithelial-mesenchymal transition in cervical cancer via mediating m6A modification of BTG2. Cytotechnology. 77:342025. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Yang Y, Li C and Wang H: ZC3H13-induced the m6A modification of hsa_circ_0081723 promotes cervical cancer progression via AMPK/p53 pathway. J Obstet Gynaecol Res. 50:2286–2298. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Chen X, Chen H and Zhang Y: ZC3H13 enhances the malignancy of cervical cancer by regulating m6a modification of CKAP2. Crit Rev Immunol. 43:1–13. 2023. View Article : Google Scholar | |
Lin X, Wang F, Chen J, Liu J, Lin YB, Li L, Chen CB and Xu Q: N(6)-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil Med Res. 9:192022.PubMed/NCBI | |
Lu X, Li R, Ying Y, Zhang W and Wang W: Gene signatures, immune infiltration, and drug sensitivity based on a comprehensive analysis of m6a RNA methylation regulators in cervical cancer. J Transl Med. 20:3852022. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Wang S, Zhang X, Yan W, Liu H, Chen X, Nie Y, Liu F, Zheng Y, Lu Y and Jin H: A genetic variant in the TAPBP gene enhances cervical cancer susceptibility by increasing m6A modification. Arch Toxicol. 98:3425–3438. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zou D, Dong L, Li C, Yin Z, Rao S and Zhou Q: The m6A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell Int. 19:3212019. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Wang L, Li X, Ren C, Gao C, Ding W and Wang H: FTO facilitates cervical cancer malignancy through inducing m6A-Demethylation of PIK3R3 mRNA. Cancer Med. 13:e705072024. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Li Y, Dong C, Qu L and Zuo Y: E6E7 regulates the HK2 expression in cervical cancer via GSK3β/FTO signal. Arch Biochem Biophys. 729:1093892022. View Article : Google Scholar : PubMed/NCBI | |
Azzam SK, Alsafar H and Sajini AA: FTO m6A demethylase in obesity and cancer: Implications and underlying molecular mechanisms. Int J Mol Sci. 23:38002022. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Yang J, Zhang Y, Lu D and Dai Y: FTO promotes cervical cancer cell proliferation, colony formation, migration and invasion via the regulation of the BMP4/Hippo/YAP1/TAZ pathway. Exp Cell Res. 427:1135852023. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Li W, Ye B, Zhang S, Lei X and Zhang D: FTO-stabilized lncRNA HOXC13-AS epigenetically upregulated FZD6 and activated Wnt/β-catenin signaling to drive cervical cancer proliferation, invasion, and EMT. J BUON. 26:1279–1291. 2021.PubMed/NCBI | |
Wang A, Jin C, Wang Y, Yu J, Wang R and Tian X: FTO promotes the progression of cervical cancer by regulating the N6-methyladenosine modification of ZEB1 and Myc. Mol Carcinog. 62:1228–1237. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huo FC, Zhu ZM, Du WQ, Pan YJ, Jiang X, Kang MJ, Liu BW, Mou J and Pei DS: HPV E7-drived ALKBH5 promotes cervical cancer progression by modulating m6A modification of PAK5. Pharmacol Res. 195:1068632023. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Zhu Y, Li J, Zeng J and Wu L: ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J Exp Clin Cancer Res. 41:2612022. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Liu L, Xu H, Zhu Q and Tan M: The involvement of MALAT1-ALKBH5 signaling axis into proliferation and metastasis of human papillomavirus-positive cervical cancer. Cancer Biol Ther. 24:22491742023. View Article : Google Scholar : PubMed/NCBI | |
Zhen L and Pan W: ALKBH5 inhibits the SIRT3/ACC1 axis to regulate fatty acid metabolism via an m6A-IGF2BP1-dependent manner in cervical squamous cell carcinoma. Clin Exp Pharmacol Physiol. 50:380–392. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang J and Wang Y: Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability. Am J Transl Res. 11:4909–4921. 2019.PubMed/NCBI | |
Xiong J, He L, Chai X, Zhang Y and Sun S: YTHDF1 boosts the lactate accumulation to potentiate cervical cancer cells immune escape. Cell Death Dis. 15:8432024. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Luo Q, Kang J, Wei Q, Yang Y, Yang D, Liu X, Liu T and Yi P: YTHDF1 aggravates the progression of cervical cancer through m6A-mediated up-regulation of RANBP2. Front Oncol. 11:6503832021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Peng Y, Li J, Chen Z, Chen F, Tu J, Lin S and Wang H: N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 11:25782020. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Guo Q, Chen X, Luo X, Long Y, Chong T, Ye M, He H, Lu A, Ao K, et al: The inhibition of YTHDF3/m6A/LRP6 reprograms fatty acid metabolism and suppresses lymph node metastasis in cervical cancer. Int J Biol Sci. 20:916–936. 2024. View Article : Google Scholar : PubMed/NCBI | |
Du H, Zou NY, Zuo HL, Zhang XY and Zhu SC: YTHDF3 mediates HNF1alpha regulation of cervical cancer radio-resistance by promoting RAD51D translation in an m6A-dependent manner. FEBS J. 290:1920–1935. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Guo C, Li Y, Ouyang L, Zhao Q and Liu K: The role of YTH domain containing 2 in epigenetic modification and immune infiltration of pan-cancer. J Cell Mol Med. 25:8615–8627. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sui H, Shi C, Yan Z, Chen J, Man L and Wang F: LRRC75A-AS1 drives the epithelial-mesenchymal transition in cervical cancer by binding IGF2BP1 and inhibiting SYVN1-mediated NLRP3 ubiquitination. Mol Cancer Res. 22:1075–1087. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Li X, Yan W, Ding B, Zhang X, Shen S, Xie S, Hu J, Liu H, Chen X, et al: Post-transcriptional regulation of tumor suppressor gene lncRNA CARMN via m6A modification and miRNA regulation in cervical cancer. J Cancer Res Clin Oncol. 149:10307–10318. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, Zhang X, Zhang W, Xu Y, Liu Y, et al: HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression. Int J Biol Sci. 18:507–521. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ji F, Lu Y, Chen S, Yu Y, Lin X, Zhu Y and Luo X: IGF2BP2-modified circular RNA circARHGAP12 promotes cervical cancer progression by interacting m6A/FOXM1 manner. Cell Death Discov. 7:2152021. View Article : Google Scholar : PubMed/NCBI | |
Han C, Hu C, Liu T, Sun Y, Hu F, He Y, Zhang J, Chen J, Ding J, Fan J, et al: IGF2BP3 enhances lipid metabolism in cervical cancer by upregulating the expression of SCD. Cell Death Dis. 15:1382024. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Xiao Z, Lu J, Zhang L, Bo L and Wang J: IGF2BP3-mediated regulation of GLS and GLUD1 gene expression promotes treg-induced immune escape in human cervical cancer. Am J Cancer Res. 13:5289–5305. 2023.PubMed/NCBI | |
Sun X, Ye G, Li J, Shou H, Bai G and Zhang J: Parkin regulates IGF2BP3 through ubiquitination in the tumourigenesis of cervical cancer. Clin Transl Med. 13:e14572023. View Article : Google Scholar : PubMed/NCBI | |
Liu YY, Xia M, Chen ZB, Liao YD, Zhang CY, Yuan L, Pan YW, Huang H, Lu HW and Yao SZ: HNRNPC mediates lymphatic metastasis of cervical cancer through m6A-dependent alternative splicing of FOXM1. Cell Death Dis. 15:7322024. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Mao Z, Ye J, Jiao X, Zhang T, Wang Q, Han S, Zhang Y, Wang C, Dong T and Cui B: Glycolysis induced by METTL14 is essential for macrophage phagocytosis and phenotype in cervical cancer. J Immunol. 212:723–736. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Diao W, Yang X, Tao Y, Hong L and Li W: Regulator of calcineurin 3 as a novel predictor of diagnosis and prognosis in pan-cancer. Croat Med J. 65:356–372. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hanzelmann S, Castelo R and Guinney J: GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 14:72013. View Article : Google Scholar : PubMed/NCBI | |
Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, et al: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 39:782–795. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shi YL, Liu MB, Wu HT, Han Y and He X: GLTP is a potential prognostic biomarker and correlates with immunotherapy efficacy in cervical cancer. Dis Markers. 2022:91093652022. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, Shen Q, Xu P, Zeng L, Zhou Y, et al: YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 10:48922019. View Article : Google Scholar : PubMed/NCBI | |
Benak D, Alanova P, Holzerova K, Chalupova M, Opletalova B, Kolar F, Pavlinkova G and Hlavackova M. Epitranscriptomic regulation of HIF-1: Bidirectional regulatory pathways. Mol Med. 31:1052025. View Article : Google Scholar : PubMed/NCBI | |
Mao Z, Wang B, Zhang T and Cui B: The roles of m6A methylation in cervical cancer: Functions, molecular mechanisms, and clinical applications. Cell Death Dis. 14:7342023. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Wang S and Li X: A comprehensive review of m6A research in cervical cancer. Epigenomics. 16:753–773. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Li B, Ma J, Jin W and Ma X: Photoactivatable RNA N(6)-methyladenosine editing with CRISPR-Cas13. Small. 16:e19073012020. View Article : Google Scholar : PubMed/NCBI | |
Lo N, Xu X, Soares F and He HH: The basis and promise of programmable RNA editing and modification. Front Genet. 13:8344132022. View Article : Google Scholar : PubMed/NCBI | |
He F, Guo Q, Jiang GX and Zhou Y: Comprehensive analysis of m6A circRNAs identified in colorectal cancer by MeRIP sequencing. Front Oncol. 12:9278102022. View Article : Google Scholar : PubMed/NCBI | |
Song C, Zhao C, Nong Y, Lin Y, Huang A, Xi S, Wei X, Zeng C, Qin Y and Zhu Q: Exploring the accuracy of third-generation Nanopore Sequencing technology for detecting mycobacterium tuberculosis in patients with diabetes mellitus. Diagn Microbiol Infect Dis. 110:1163922024. View Article : Google Scholar : PubMed/NCBI |