
Acute myeloid leukemia with plasmacytoid dendritic cell proliferation: A case report and literature review
- Authors:
- Zhixin Pei
- Yi Zhang
- Han Xu
- Pei Pei
- Zhengyang Zhang
- Hongxia Wang
- Bei Zhang
- Junjun Bai
- Yingxin Zhao
- Jingjing Gu
- Zhiyu Fang
- Miaomiao Liu
- Qinglin Song
-
Affiliations: Department of Hematology, Jiaozuo People's Hospital, Jiaozuo, Henan 454000, P.R. China, Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo, Henan 454000, P.R. China, Jiangsu Key Laboratory of Experimental and Translational Non‑coding RNA Research, Yangzhou University Medical College, Yangzhou, Jiangsu 225009, P.R. China, Laboratory of Hematological Diseases, Jiaozuo People's Hospital, Jiaozuo, Henan 454000, P.R. China, Department of Hematology, Jiaozuo People's Hospital, Jiaozuo, Henan 454000, P.R. China - Published online on: July 22, 2025 https://doi.org/10.3892/ol.2025.15202
- Article Number: 456
-
Copyright: © Pei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Martignoles JA, Delhommeau F and Hirsch P: Genetic hierarchy of acute myeloid leukemia: From clonal hematopoiesis to molecular residual disease. Int J Mol Sci. 19:38502018. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Zhang H, Yang H, Koche R, Staber PB, Cusan M, Levantini E, Welner RS, Bach CS, Zhang J, et al: Hematopoietic differentiation is required for initiation of acute myeloid leukemia. Cell Stem Cell. 17:611–623. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
De Kouchkovsky I and Abdul-Hay M: ‘Acute myeloid leukemia: A comprehensive review and 2016 update’. Blood Cancer J. 6:e4412016. View Article : Google Scholar : PubMed/NCBI | |
National Cancer Institute, . Surveillance, Epidemiology, and End Results (SEER) Program. Cancer Stat Facts: Leukemia-Acute Myeloid Leukemia (AML). https://seer.cancer.gov/statfacts/html/amyl.html | |
Forsberg M and Konopleva M: AML treatment: Conventional chemotherapy and emerging novel agents. Trends Pharmacol Sci. 45:430–448. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang BJ, Meyer LK, Alonzo TA, Wang YC, Lamble AJ, Ries RE, Wang W, Hirsch B, Raca G, Ma X, et al: Hematopoietic stem cell transplantation outcomes for high-risk AML: A report from the children's oncology group. J Clin Oncol. 43:1961–1971. 2025. View Article : Google Scholar : PubMed/NCBI | |
Ewald L, Dittmann J, Vogler M and Fulda S: Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML. Cell Death Dis. 10:9172019. View Article : Google Scholar : PubMed/NCBI | |
Renard C, Corbel A, Paillard C, Pochon C, Schneider P, Simon N, Buchbinder N, Fahd M, Yakoub-Agha I and Calvo C: Preventive and therapeutic strategies for relapse after hematopoietic stem cell transplant for pediatric AML (SFGM-TC). Bull Cancer. 112((1S)): S135–S145. 2025.(In French). View Article : Google Scholar : PubMed/NCBI | |
Tawfik B, Sliesoraitis S, Lyerly S, Klepin HD, Lawrence J, Isom S, Ellis LR, Manuel M, Dralle S, Berenzon D, et al: Efficacy of the hypomethylating agents as frontline, salvage, or consolidation therapy in adults with acute myeloid leukemia (AML). Ann Hematol. 93:47–55. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fernandez HF: What is the optimal induction therapy for younger fit patients with AML? Curr Hematol Malig Rep. 11:327–332. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiao WB, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, et al: Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood. 137:1377–1391. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nong T, Mehra S and Taylor J: Common driver mutations in AML: Biological impact, clinical considerations, and treatment strategies. Cells. 13:13922024. View Article : Google Scholar : PubMed/NCBI | |
Naji NS, Sathish M and Karantanos T: Inflammation and Related signaling pathways in acute myeloid leukemia. Cancers (Basel). 16:39742025. View Article : Google Scholar | |
Lee HJ, Daver N, Kantarjian HM, Verstovsek S and Ravandi F: The role of JAK pathway dysregulation in the pathogenesis and treatment of acute myeloid leukemia. Clin Cancer Res. 19:327–335. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li YF, Wan H and Jing Y: Molecular characterization and clinical treatment of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients with TP53 mutation. Clin Lymphoma Myeloma Leuk. 21:841–851. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Feng Y, Deng X, Liu S, Qiang X, Gou Y, Li J, Yang W, Peng X and Zhang X: Tumor-forming plasmacytoid dendritic cells in acute myelocytic leukemia: A report of three cases and literature review. Int J Clin Exp Pathol. 10:7285–7291. 2017.PubMed/NCBI | |
Tang K, Schuh AC and Yee KW: 3+7 combined chemotherapy for acute myeloid leukemia: Is it time to say goodbye? Curr Oncol Rep. 23:1202021. View Article : Google Scholar : PubMed/NCBI | |
Tawfik B, Pardee TS, Isom S, Sliesoraitis S, Winter A, Lawrence J, Powell BL and Klepin HD: Comorbidity, age, and mortality among adults treated intensively for acute myeloid leukemia (AML). J Geriatr Oncol. 7:24–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abdallah M, Xie Z, Ready A, Manogna D, Mendler JH and Loh KP: Management of acute myeloid leukemia (AML) in older patients. Curr Oncol Rep. 22:1032020. View Article : Google Scholar : PubMed/NCBI | |
Medeiros BC, Othus M, Fang M, Appelbaum FR and Erba HP: Cytogenetic heterogeneity negatively impacts outcomes in patients with acute myeloid leukemia. Haematologica. 100:331–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Madan V, Cao Z, Teoh WW, Dakle P, Han L, Shyamsunder P, Jeitany M, Zhou S, Li J, Nordin HBM, et al: ZRSR1 Co-operates with ZRSR2 in regulating splicing of U12-type introns in murine hematopoietic cells. Haematologica. 107:680–689. 2022. View Article : Google Scholar : PubMed/NCBI | |
Togami K, Chung SS, Madan V, Booth CAG, Kenyon CM, Cabal-Hierro L, Taylor J, Kim SS, Griffin GK, Ghandi M, et al: Sex-Biased ZRSR2 mutations in myeloid malignancies impair plasmacytoid dendritic cell activation and apoptosis. Cancer Discov. 12:522–541. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Cai X and Li D: Significance of targeting DNMT3A mutations in AML. Ann Hematol. 104:1399–1414. 2025. View Article : Google Scholar : PubMed/NCBI | |
Cai XY, Huang GQ, Zhou YM and Li DJ: Targeting calprotectin S100A8/A9 to overcome AML progression in DNMT3A-Mutant cells. Curr Med Sci. 45:458–468. 2025. View Article : Google Scholar : PubMed/NCBI | |
Palam LR, Ramdas B, Pickerell K, Pasupuleti SK, Kanumuri R, Cesarano A, Szymanski M, Selman B, Dave UP, Sandusky G, et al: Loss of Dnmt3a impairs hematopoietic homeostasis and myeloid cell skewing via the PI3Kinase pathway. JCI Insight. 8:e1638642023. View Article : Google Scholar : PubMed/NCBI | |
Gerritsen M, Yi G, Tijchon E, Kuster J, Schuringa JJ, Martens JHA and Vellenga E: RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Adv. 3:320–332. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang FC and Agosto-Peña J: Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol. 117:791–806. 2023. View Article : Google Scholar : PubMed/NCBI | |
Medina EA, Delma CR and Yang FC: ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol. 15:1272022. View Article : Google Scholar : PubMed/NCBI | |
Duan W, Jia J, Wang J, Liu X, Yu W, Zhu X, Zhao T, Jiang Q, Ruan G, Zhao X, et al: Only FLT3-ITD co-mutation did not have a deleterious effect on acute myeloid leukemia patients with NPM1 mutation, but concomitant with DNMT3A co-mutation or a < 3log reduction of MRD2 predicted poor survival. Ann Hematol. 103:4525–4535. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ebian HF, Elshorbagy S, Mohamed H, Embaby A, Khamis T, Sameh R, Sabbah NA and Hussein S: Clinical implication and prognostic significance of FLT3-ITD and ASXL1 mutations in Egyptian AML patients: A single-center study. Cancer Biomark. 32:379–389. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Zhang J, Zhu L, Xin X and Hu H: The epigenetic role of EZH2 in acute myeloid leukemia. PeerJ. 12:e186562024. View Article : Google Scholar : PubMed/NCBI | |
Stomper J, Meier R, Ma T, Pfeifer D, Ihorst G, Blagitko-Dorfs N, Greve G, Zimmer D, Platzbecker U, Hagemeijer A, et al: Integrative study of EZH2 mutational status, copy number, protein expression and H3K27 trimethylation in AML/MDS patients. Clin Epigenetics. 13:772021. View Article : Google Scholar : PubMed/NCBI | |
Tecik M and Adan A: Therapeutic targeting of FLT3 in acute myeloid leukemia: Current status and novel approaches. Onco Targets Ther. 15:1449–1478. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pacharne S, Dovey OM, Cooper JL, Gu M, Friedrich MJ, Rajan SS, Barenboim M, Collord G, Vijayabaskar MS, Ponstingl H, et al: SETBP1 overexpression acts in the place of class-defining mutations to drive FLT3-ITD-mutant AML. Blood Adv. 5:2412–2425. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li HD, Chen SS, Ding J, Zhang CL, Qiu HY, Xia XX, Yang J and Wang XR: Exploration of ETV6::ABL1-positive AML with concurrent NPM1 and FLT3-ITD mutations. Ann Hematol. 103:4295–4304. 2024. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell MR, Abboud CN, Altman J, Appelbaum FR, Coutre SE, Damon LE, Foran JM, Goorha S, Maness LJ, Marcucci G, et al: Acute myeloid leukemia. J Natl Compr Canc Netw. 9:280–317. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cui P, Zhang Y, Cui M, Li Z, Ma G, Wang R, Wang N, Huang S and Gao J: Leukemia cells impair normal hematopoiesis and induce functionally loss of hematopoietic stem cells through immune cells and inflammation. Leukemia Res. 65:49–54. 2018. View Article : Google Scholar : PubMed/NCBI | |
Miraki-Moud F, Anjos-Afonso F, Hodby KA, Griessinger E, Rosignoli G, Lillington D, Jia L, Davies JK, Cavenagh J, Smith M, et al: Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. Proc Natl Acad Sci USA. 110:13576–13581. 2013. View Article : Google Scholar : PubMed/NCBI | |
Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF, Berneman ZN and Anguille S: Dendritic cell-based immunotherapy of acute myeloid leukemia. J Clin Med. 8:5792019. View Article : Google Scholar : PubMed/NCBI | |
Pollyea DA, DiNardo CD, Arellano ML, Pigneux A, Fiedler W, Konopleva M, Rizzieri DA, Smith BD, Shinagawa A, Lemoli RM, et al: Impact of venetoclax and azacitidine in treatment-naïve patients with acute myeloid leukemia and IDH1/2 mutations. Clin Cancer Res. 28:2753–2761. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu R, Li L, Nguyen B, Seo J, Wu M, Seale T, Levis M, Duffield A, Hu Y and Small D: FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct Target Ther. 6:1862021. View Article : Google Scholar : PubMed/NCBI | |
Yao MY, Wang YF, Zhao Y, Ling LJ, He Y, Wen J, Zheng MY, Jiang HL and Xie CY: BCL-2 inhibitor synergizes with PI3Kδ inhibitor and overcomes FLT3 inhibitor resistance in acute myeloid leukaemia. Am J Cancer Res. 12:3829–3842. 2022.PubMed/NCBI | |
Yang J, Zhang P, Mao Y, Chen R, Cheng R, Li J, Sun H, Deng C and Zhong Z: CXCR4-mediated codelivery of FLT3 and BCL-2 inhibitors for enhanced targeted combination therapy of FLT3-ITD acute myeloid leukemia. Biomacromolecules. 25:4569–4580. 2024. View Article : Google Scholar : PubMed/NCBI | |
Molenaar RJ, Radivoyevitch T, Nagata Y, Khurshed M, Przychodzen B, Makishima H, Xu M, Bleeker FE, Wilmink JW, Carraway HE, et al: IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors. Clin Cancer Res. 24:1705–1715. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bonnevaux H, Guerif S, Albrecht J, Jouannot E, De Gallier T, Beil C, Lange C, Leuschner WD, Schneider M, Lemoine C, et al: Pre-clinical development of a novel CD3-CD123 bispecific T-cell engager using cross-over dual-variable domain (CODV) format for acute myeloid leukemia (AML) treatment. Oncoimmunology. 10:19458032021. View Article : Google Scholar : PubMed/NCBI | |
Watts J, Lin TL, Mims A, Patel P, Lee C, Shahidzadeh A, Shami P, Cull E, Cogle CR, Wang E and Uckun FM: Post-hoc analysis of pharmacodynamics and single-agent activity of CD3×CD123 bispecific antibody APVO436 in relapsed/refractory AML and MDS resistant to HMA or venetoclax plus HMA. Front Oncol. 11:8062432022. View Article : Google Scholar : PubMed/NCBI | |
Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, Hoffman L, Aguilar B, Chang WC, Bretzlaff W, et al: T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 122:3138–3148. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leber B, Ruiz MT, Elgendy H, Pettersson F, Prebet T, Vigil CE, Parikh RC, Korgaonkar S, Bello F, Davis KL, et al: Real-world treatment patterns and outcomes with oral azacitidine maintenance therapy in patients with acute myeloid leukemia. Cancer. 131:e358452025. View Article : Google Scholar : PubMed/NCBI | |
Gajendran C, Tantry SJ, MNS Mohammed Z, Dewang P, Hallur M, Nair S, Vaithilingam K, Nagayya B, Rajagopal S and Sivanandhan D: Novel dual LSD1/HDAC6 inhibitor for the treatment of cancer. PLoS One. 18:e02790632023. View Article : Google Scholar : PubMed/NCBI | |
Naveen Sadhu M, Sivanandhan D, Gajendran C, Tantry S, Dewang P, Murugan K, Chickamunivenkatappa S, Zainuddin M, Nair S, Vaithilingam K and Rajagopal S: Novel dual LSD1/HDAC6 inhibitors for the treatment of multiple myeloma. Bioorg Med Chem Lett. 34:1277632020. View Article : Google Scholar : PubMed/NCBI | |
Mukhopadhyay S, Huang HY, Lin Z, Ranieri M, Li S, Sahu S, Liu Y, Ban Y, Guidry K, Hu H, et al: Genome-Wide CRISPR screens identify multiple synthetic lethal targets that enhance KRASG12C inhibitor efficacy. Cancer Res. 83:4095–4111. 2023. View Article : Google Scholar : PubMed/NCBI | |
He Y, Li H, Ju X and Gong B: Developing pioneering pharmacological strategies with CRISPR/Cas9 library screening to overcome cancer drug resistance. Biochim Biophys Acta Rev Cancer. 1879:1892122024. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Calderon F, Gregory MA and DeGregori J: Using functional genomics to overcome therapeutic resistance in hematological malignancies. Immunol Res. 55:100–115. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fatehchand K, Mehta P, Colvin CB, Buteyn NJ, Santhanam R, Merchand-Reyes G, Inshaar H, Shen B, Mo X, Mundy-Bosse B, et al: Activation of plasmacytoid dendritic cells promotes AML-cell fratricide. Oncotarget. 12:878–890. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ayyadurai VAS, Deonikar P, Mclure KG and Sakamoto KM: Molecular systems architecture of interactome in the acute myeloid leukemia microenvironment. Cancers (Basel). 14:7562022. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Wang P, Zhang W, Li Q, Xiong J, Li J, Deng X, Liu Y, Yang C, Kong P, et al: Plasmacytoid dendritic cell infiltration in acute myeloid leukemia. Cancer Manag Res. 12:11411–11419. 2020. View Article : Google Scholar : PubMed/NCBI | |
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, et al: The 5th edition of the World Health Organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia. 36:1703–1719. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zalmaï L, Viailly PJ, Biichle S, Cheok M, Soret L, Angelot-Delettre F, Petrella T, Collonge-Rame MA, Seilles E, Geffroy S, et al: Plasmacytoid dendritic cells proliferation associated with acute myeloid leukemia: Phenotype profile and mutation landscape. Haematologica. 106:3056–3066. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Xu J, Khoury JD, Pemmaraju N, Fang H, Miranda RN, Yin CC, Hussein SE, Jia F, Tang Z, et al: Immunophenotypic and molecular features of acute myeloid leukemia with plasmacytoid dendritic cell differentiation are distinct from blastic plasmacytoid dendritic cell neoplasm. Cancers (Basel). 14:33752022. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Wang Y, Chang Y, Yuan X, Hao L, Shi H, Lai Y, Huang X and Liu Y: Myeloid neoplasms with elevated plasmacytoid dendritic cell differentiation reflect the maturation process of dendritic cells. Cytometry A. 97:61–69. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Li C, Wang Y, Rao Q, Mi Y, Wang M, Wei H and Wang J: Mature plasmacytoid dendritic cells associated with acute myeloid leukemia show similar genetic mutations and expression profiles to leukemia cells. Blood Sci. 4:38–43. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li G, Cheng L and Su L: Phenotypic and functional study of human plasmacytoid dendritic cells. Curr Protoc. 1:e502021. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, et al: Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood. 137:1377–1391. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lucas N, Duchmann M, Rameau P, Noël F, Michea P, Saada V, Kosmider O, Pierron G, Fernandez-Zapico ME, Howard MT, et al: Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia. Leukemia. 33:2466–2480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Klanova M, Lorkova L, Vit O, Maswabi B, Molinsky J, Pospisilova J, Vockova P, Mavis C, Lateckova L, Kulvait V, et al: Downregulation of deoxycytidine kinase in cytarabine-resistant mantle cell lymphoma cells confers cross-resistance to nucleoside analogs gemcitabine, fludarabine and cladribine, but not to other classes of anti-lymphoma agents. Mol Cancer. 13:1592014. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Millan B, Diaz de la Guardia R, Roca-Ho H, Anguita E, Islam ABMMK, Romero-Moya D, Prieto C, Gutierrez-Agüera F, Bejarano-Garcia JA, Perez-Simon JA, et al: IMiDs mobilize acute myeloid leukemia blasts to peripheral blood through downregulation of CXCR4 but fail to potentiate AraC/Idarubicin activity in preclinical models of non del5q/5q-AML. Oncoimmunology. 7:e14774602018. View Article : Google Scholar : PubMed/NCBI | |
Goulart H, Kantarjian H, Borthakur G, Daver N, DiNardo CD, Jabbour E, Pemmaraju N, Alvarado Y, Atluri H, Yilmaz M, et al: Cladribine, idarubicin, and cytarabine (CLIA) for patients with relapsed and/or refractory acute myeloid leukemia: A single-center, single-arm, phase 2 trial. Cancer. 131:e358402025. View Article : Google Scholar : PubMed/NCBI | |
Sharon D, Cathelin S, Mirali S, Di Trani JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T and Chan SM: Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci Transl Med. 11:eaax28632019. View Article : Google Scholar : PubMed/NCBI | |
Pemmaraju N, Deconinck E, Mehta P, Walker I, Herling M, Garnache-Ottou F, Gabarin N, Campbell CJV, Duell J, Moshe Y, et al: Recent advances in the biology and CD123-directed treatment of blastic plasmacytoid dendritic cell neoplasm. Clin Lymphoma Myeloma Leuk. 24:e130–e137. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pammaraju N, Kantarjian H, Sweet K, Wang ES, Lane AA, Ali H, Stein AS, Yacoub A, Rizzieri D, Vasu S, et al: Poster: AML-397 Integrated Safety Analysis of Tagraxofusp, a CD123-Directed Targeted Therapy, in Patients With Hematologic Malignancies. Clin Lymphoma Myeloma Leuk. 22:S246–S247. 2022. View Article : Google Scholar | |
DiPippo AJ, Wilson NR and Pemmaraju N: Targeting CD123 in BPDCN: An emerging field. Expert Rev Hematol. 14:993–1004. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aldoss I, Clark M, Song JY and Pullarkat V: Targeting the alpha subunit of IL-3 receptor (CD123) in patients with acute leukemia. Hum Vaccin Immunother. 16:2341–2348. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lane AA: Targeting CD123 in AML. Clin Lymphoma Myeloma Leuk. 20 (Suppl 1):S67–S68. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roussel X, Garnache Ottou F and Renosi F: Plasmacytoid dendritic cells, a novel target in myeloid neoplasms. Cancers (Basel). 14:35452022. View Article : Google Scholar : PubMed/NCBI |