1
|
Park W, Chawla A and O'reilly EM:
Pancreatic cancer: A review. JAMA. 326:851–862. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Halbrook CJ, Lyssiotis CA, di Magliano M
and Maitra A: Pancreatic cancer: Advances and challenges. Cell.
186:1729–1754. 2023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wood LD, Canto MI, Jaffee EM and Simeone
DM: Pancreatic cancer: Pathogenesis, screening, diagnosis, and
treatment. Gastroenterology. 163:386–402.e1. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vincent A, Herman J, Schulick R, Hruban RH
and Goggins M: Pancreatic cancer. Lancet. 378:607–620. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang X, Zhang G, Tang T and Liang T:
Identification of tumor antigens and immune subtypes of pancreatic
adenocarcinoma for mRNA vaccine development. Mol Cancer. 20:442021.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Li K, Du Y, Li L and Wei DQ:
Bioinformatics approaches for anti-cancer drug discovery. Curr Drug
Targets. 21:3–17. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Duan X, Zhang T, Feng L, de Silva N,
Greenspun B, Wang X, Moyer J, Martin ML, Chandwani R, Elemento O,
et al: A pancreatic cancer organoid platform identifies an
inhibitor specific to mutant KRAS. Cell Stem Cell. 31:71–88.e8.
2024. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mccubrey JA, Yang LV, Abrams SL, Steelman
LS, Follo MY, Cocco L, Ratti S, Martelli AM, Augello G and Cervello
M: Effects of TP53 mutations and mirs on immune responses in the
tumor microenvironment important in pancreatic cancer progression.
Cells. 11:21552022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Provenzano PP, Cuevas C, Chang AE, Goel
VK, Von Hoff DD and Hingorani SR: Enzymatic targeting of the stroma
ablates physical barriers to treatment of pancreatic ductal
adenocarcinoma. Cancer Cell. 21:418–429. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Moore MJ, Hamm J, Dancey J, Eisenberg PD,
Dagenais M, Fields A, Hagan K, Greenberg B, Colwell B, Zee B, et
al: Comparison of gemcitabine versus the matrix metalloproteinase
inhibitor BAY 12-9566 in patients with advanced or metastatic
adenocarcinoma of the pancreas: A phase III trial of the national
cancer institute of canada clinical trials group. J Clin Oncol.
21:3296–3302. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bramhall SR, Rosemurgy A, Brown PD, Bowry
C and Buckels JA; Marimastat Pancreatic Cancer Study Group, :
Marimastat as first-line therapy for patients with unresectable
pancreatic cancer: A randomized trial. J Clin Oncol. 19:3447–3455.
2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Thompson CB, Shepard HM, O'connor PM,
Kadhim S, Jiang P, Osgood RJ, Bookbinder LH, Li X, Sugarman BJ,
Connor RJ, et al: Enzymatic depletion of tumor hyaluronan induces
antitumor responses in preclinical animal models. Mol Cancer Ther.
9:3052–3064. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim SK and Melton DA: Pancreas development
is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc
Natl Acad Sci USA. 95:13036–13041. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Catenacci DV, Junttila MR, Karrison T,
Bahary N, Horiba MN, Nattam SR, Marsh R, Wallace J, Kozloff M,
Rajdev L, et al: Randomized phase Ib/II study of gemcitabine plus
placebo or vismodegib, a hedgehog pathway inhibitor, in patients
with metastatic pancreatic cancer. J Clin Oncol. 33:4284–4292.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gunderson AJ, Yamazaki T, Mccarty K,
Phillips M, Alice A, Bambina S, Zebertavage L, Friedman D, Cottam
B, Newell P, et al: Blockade of fibroblast activation protein in
combination with radiation treatment in murine models of pancreatic
adenocarcinoma. PLoS One. 14:e02111172019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Elyada E, Bolisetty M, Laise P, Flynn WF,
Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS,
et al: Cross-species single-cell analysis of pancreatic ductal
adenocarcinoma reveals antigen-presenting cancer-associated
fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Whatcott CJ, Diep CH, Jiang P, Watanabe A,
LoBello J, Sima C, Hostetter G, Shepard HM, Von Hoff DD and Han H:
Desmoplasia in primary tumors and metastatic lesions of pancreatic
cancer. Clin Cancer Res. 21:3561–3568. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ligorio M, Sil S, Malagon-Lopez J, Nieman
LT, Misale S, Di Pilato M, Ebright RY, Karabacak MN, Kulkarni AS,
Liu A, et al: Stromal microenvironment shapes the intratumoral
architecture of pancreatic cancer. Cell. 178:160–175.e27. 2019.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ho WJ, Jaffee EM and Zheng L: The tumour
microenvironment in pancreatic cancer-clinical challenges and
opportunities. Nat Rev Clin Oncol. 17:527–540. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Danilova L, Ho WJ, Zhu Q, Vithayathil T,
De Jesus-Acosta A, Azad NS, Laheru DA, Fertig EJ, Anders R, Jaffee
EM and Yarchoan M: Programmed cell death ligand-1 (PD-L1) and CD8
expression profiling identify an immunologic subtype of pancreatic
ductal adenocarcinomas with favorable survival. Cancer Immunol Res.
7:886–895. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yadav D and Lowenfels AB: The epidemiology
of pancreatitis and pancreatic cancer. Gastroenterology.
144:1252–1261. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Qin H, Chen W, Takahashi M, Disis ML, Byrd
DR, McCahill L, Bertram KA, Fenton RG, Peace DJ and Cheever MA:
CD4+ T-cell immunity to mutated ras protein in pancreatic and colon
cancer patients. Cancer Res. 55:2984–2987. 1995.PubMed/NCBI
|
23
|
Salman B, Zhou D, Jaffee EM, Edil BH and
Zheng L: Vaccine therapy for pancreatic cancer. Oncoimmunology.
2:e266622013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hopkins AC, Yarchoan M, Durham JN, Yusko
EC, Rytlewski JA, Robins HS, Laheru DA, Le DT, Lutz ER and Jaffee
EM: T cell receptor repertoire features associated with survival in
immunotherapy-treated pancreatic ductal adenocarcinoma. JCI
Insight. 3:e1220922018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Le DT and Jaffee EM: Regulatory T-cell
modulation using cyclophosphamide in vaccine approaches: A current
perspective. Cancer Res. 72:3439–3444. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ries CH, Cannarile MA, Hoves S, Benz J,
Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I,
et al: Targeting tumor-associated macrophages with anti-CSF-1R
antibody reveals a strategy for cancer therapy. Cancer Cell.
25:846–859. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Beatty GL, Chiorean EG, Fishman MP,
Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL,
et al: CD40 agonists alter tumor stroma and show efficacy against
pancreatic carcinoma in mice and humans. Science. 331:1612–1616.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fu J, Kanne DB, Leong M, Glickman LH,
McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, et
al: STING agonist formulated cancer vaccines can cure established
tumors resistant to PD-1 blockade. Sci Transl Med. 7:283ra522015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Solinas C, Gu-Trantien C and Willard-Gallo
K: The rationale behind targeting the ICOS-ICOS ligand
costimulatory pathway in cancer immunotherapy. ESMO Open.
5:e0005442020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Noel M, O'reilly EM, Wolpin BM, Ryan DP,
Bullock AJ, Britten CD, Linehan DC, Belt BA, Gamelin EC, Ganguly B,
et al: Phase 1b study of a small molecule antagonist of human
chemokine (C-C motif) receptor 2 (PF-04136309) in combination with
nab-paclitaxel/gemcitabine in first-line treatment of metastatic
pancreatic ductal adenocarcinoma. Invest New Drugs. 38:800–811.
2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Steele CW, Karim SA, Leach JDG, Bailey P,
Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z,
et al: CXCR2 inhibition profoundly suppresses metastases and
augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer
Cell. 29:832–845. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Eriksson E, Milenova I, Wenthe J, Ståhle
M, Leja-Jarblad J, Ullenhag G, Dimberg A, Moreno R, Alemany R and
Loskog A: Shaping the tumor stroma and sparking immune activation
by CD40 and 4-1BB signaling induced by an armed oncolytic virus.
Clin Cancer Res. 23:5846–5857. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Carew JS, Espitia CM, Zhao W, Kelly KR,
Coffey M, Freeman JW and Nawrocki ST: Reolysin is a novel
reovirus-based agent that induces endoplasmic reticular
stress-mediated apoptosis in pancreatic cancer. Cell Death Dis.
4:e7282013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Christmas BJ, Rafie CI, Hopkins AC, Scott
BA, Ma HS, Cruz KA, Woolman S, Armstrong TD, Connolly RM, Azad NA,
et al: Entinostat converts immune-resistant breast and pancreatic
cancers into checkpoint-responsive tumors by reprogramming
tumor-infiltrating MDSCs. Cancer Immunol Res. 6:1561–1577. 2018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wei J, Yang Y, Wang G and Liu M: Current
landscape and future directions of bispecific antibodies in cancer
immunotherapy. Front Immunol. 13:10352762022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Geng Q and Jiao P: Anti-PD-L1-based
bispecific antibodies targeting co-inhibitory and co-stimulatory
molecules for cancer immunotherapy. Molecules. 29:4542024.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang-Gillam A, Lim KH, Mcwilliams R,
Suresh R, Lockhart AC, Brown A, Breden M, Belle JI, Herndon J,
Bogner SJ, et al: Defactinib, pembrolizumab, and gemcitabine in
patients with advanced treatment refractory pancreatic cancer: A
phase I dose escalation and expansion study. Clin Cancer Res.
28:5254–5262. 2022. View Article : Google Scholar : PubMed/NCBI
|
38
|
Allard B, Longhi MS, Robson SC and Stagg
J: The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor
targets. Immunol Rev. 276:121–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Loo JM, Scherl A, Nguyen A, Man FY,
Weinberg E, Zeng Z, Saltz L, Paty PB and Tavazoie SF: Extracellular
metabolic energetics can promote cancer progression. Cell.
160:393–406. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Akhurst RJ: Targeting TGF-β signaling for
therapeutic gain. Cold Spring Harb Perspect Biol. 9:a0223012017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Melisi D, Garcia-Carbonero R, Macarulla T,
Pezet D, Deplanque G, Fuchs M, Trojan J, Oettle H, Kozloff M,
Cleverly A, et al: Galunisertib plus gemcitabine vs. gemcitabine
for first-line treatment of patients with unresectable pancreatic
cancer. Br J Cancer. 119:1208–1214. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sharma NS, Gupta VK, Garrido VT, Hadad R,
Durden BC, Kesh K, Giri B, Ferrantella A, Dudeja V, Saluja A and
Banerjee S: Targeting tumor-intrinsic hexosamine biosynthesis
sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest.
130:451–465. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Deer EL, González-Hernández J, Coursen JD,
Shea JE, Ngatia J, Scaife CL, Firpo MA and Mulvihill SJ: Phenotype
and genotype of pancreatic cancer cell lines. Pancreas. 39:425–435.
2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Grünwald BT, Devisme A, Andrieux G, Vyas
F, Aliar K, McCloskey CW, Macklin A, Jang GH, Denroche R, Romero
JM, et al: Spatially confined sub-tumor microenvironments in
pancreatic cancer. Cell. 184:5577–5592.e18. 2021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kamata K, Takenaka M, Nishida N, Hara A,
Otsuka Y, Tanaka H, Omoto S, Minaga K, Yamao K, Chiba Y, et al:
Impact of Smad4 and p53 mutations on the prognosis of patients with
pancreatic ductal adenocarcinoma undergoing chemotherapy. Int J
Clin Oncol. 28:1511–1519. 2023. View Article : Google Scholar : PubMed/NCBI
|
47
|
Luo W, Wang J, Chen H, Ye L, Qiu J, Liu Y,
Wang R, Weng G, Liu T, Su D, et al: Epidemiology of pancreatic
cancer: New version, new vision. Chin J Cancer Res. 35:438–450.
2023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay
MZ, Coleman-Barnett J, West JT and Moaven O: Pancreatic cancer
tumor microenvironment is a major therapeutic barrier and target.
Front Immunol. 15:12874592024. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kolbeinsson HM, Chandana S, Wright GP and
Chung M: Pancreatic cancer: A review of current treatment and novel
therapies. J Invest Surg. 36:21298842023. View Article : Google Scholar : PubMed/NCBI
|
50
|
Hu JX, Zhao CF, Chen WB, Liu QC, Li QW,
Lin YY and Gao F: Pancreatic cancer: A review of epidemiology,
trend, and risk factors. World J Gastroenterol. 27:4298–4321. 2021.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Guo Y, Wang X, Zhang C, Chen W, Fu Y, Yu
Y, Chen Y, Shao T, Zhang J and Ding G: Tumor immunotherapy
targeting B7-H3: From mechanisms to clinical applications.
Immunotargets Ther. 14:291–320. 2025. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhu X, Herrera G and Ochoa JB:
Immunosupression and infection after major surgery: A nutritional
deficiency. Crit Care Clin. 26:491–500. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tekguc M, Wing JB, Osaki M, Long J and
Sakaguchi S: Treg-expressed CTLA-4 depletes CD80/CD86 by
trogocytosis, releasing free PD-L1 on antigen-presenting cells.
Proc Natl Acad Sci USA. 118:e20237391182021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Phan NM, Nguyen TL and Kim J:
Nanozyme-based enhanced cancer immunotherapy. Tissue Eng Regen Med.
19:237–252. 2022. View Article : Google Scholar : PubMed/NCBI
|
55
|
Algazi A, Bhatia S, Agarwala S, Molina M,
Lewis K, Faries M, Fong L, Levine LP, Franco M, Oglesby A, et al:
Intratumoral delivery of tavokinogene telseplasmid yields systemic
immune responses in metastatic melanoma patients. Ann Oncol.
31:532–540. 2020. View Article : Google Scholar : PubMed/NCBI
|