Open Access

Radiomics-based prediction of HCC response to atezolizumab/bevacizumab

  • Authors:
    • Isaac Rodriguez
    • Abhinay Vellala
    • Timo Itzel
    • Jimmy Daza
    • Michael Vácha
    • De-Hua Chang
    • Manuel Debic
    • Michael T. Dill
    • Max Seidensticker
    • Julia Mayerle
    • Stefan Munker
    • Stefan O. Schoenberg
    • Lukas Müller
    • Peter R. Galle
    • Arndt Weinmann
    • Dietmar Tamandl
    • Matthias Pinter
    • Bernhard Scheiner
    • Christel Weiss
    • Maciej Pech
    • Friedrich Sinner
    • Verena Keitel
    • Marino Venerito
    • Matthias Philip Ebert
    • Andreas Teufel
    • Matthias F. Froelich
  • View Affiliations

  • Published online on: August 14, 2025     https://doi.org/10.3892/ol.2025.15229
  • Article Number: 484
  • Copyright: © Rodriguez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Advanced hepatocellular carcinoma (HCC) treatment has evolved with the introduction of atezolizumab/
bevacizumab, showing improved outcomes over sorafenib. However, the response varies among patients, particularly between viral and non-viral etiologies. The present study aimed to develop and evaluate multimodal prediction models combining quantitative imaging and clinical markers to predict the treatment response in patients with HCC. Between March 2020 and May 2023, patients with advanced HCC treated with atezolizumab/bevacizumab were retrospectively identified from six centers in Germany and Austria. Patients underwent baseline contrast-enhanced liver MRI and follow-up imaging to assess the therapy response. Machine learning models, including RandomForestClassifier, were developed for radiomics, clinical and combined datasets. Hyperparameter tuning was performed using RandomizedSearchCV, followed by cross-validation to evaluate model performance. The study included 103 patients, with 70 achieving disease control (DC) and 33 experiencing disease progression (PD). Key findings included significant differences in treatment response and progression-free survival between the DC and PD groups. The radiomics model, using 14 selected features, achieved 73.1% accuracy and a receiver operating characteristic (ROC) area under the curve (AUC) of 0.635 for the test set. The clinical model, with 4 selected features, achieved 73% accuracy and a ROC AUC of 0.649 for the test set. The combined model showed improved performance, with 69% accuracy and a ROC AUC of 0.753 for the test set. Hyperparameter tuning further enhanced the accuracy of the combined model to 80.1% and the ROC AUC to 0.771 for the test set. In conclusion, the hybrid model combining clinical and radiological data outperformed individual models, providing improved predictions of response to atezolizumab/bevacizumab in patients with HCC.
View Figures
View References

Related Articles

Journal Cover

October-2025
Volume 30 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Rodriguez I, Vellala A, Itzel T, Daza J, Vácha M, Chang D, Debic M, Dill MT, Seidensticker M, Mayerle J, Mayerle J, et al: Radiomics-based prediction of HCC response to atezolizumab/bevacizumab. Oncol Lett 30: 484, 2025.
APA
Rodriguez, I., Vellala, A., Itzel, T., Daza, J., Vácha, M., Chang, D. ... Froelich, M.F. (2025). Radiomics-based prediction of HCC response to atezolizumab/bevacizumab. Oncology Letters, 30, 484. https://doi.org/10.3892/ol.2025.15229
MLA
Rodriguez, I., Vellala, A., Itzel, T., Daza, J., Vácha, M., Chang, D., Debic, M., Dill, M. T., Seidensticker, M., Mayerle, J., Munker, S., Schoenberg, S. O., Müller, L., Galle, P. R., Weinmann, A., Tamandl, D., Pinter, M., Scheiner, B., Weiss, C., Pech, M., Sinner, F., Keitel, V., Venerito, M., Ebert, M. P., Teufel, A., Froelich, M. F."Radiomics-based prediction of HCC response to atezolizumab/bevacizumab". Oncology Letters 30.4 (2025): 484.
Chicago
Rodriguez, I., Vellala, A., Itzel, T., Daza, J., Vácha, M., Chang, D., Debic, M., Dill, M. T., Seidensticker, M., Mayerle, J., Munker, S., Schoenberg, S. O., Müller, L., Galle, P. R., Weinmann, A., Tamandl, D., Pinter, M., Scheiner, B., Weiss, C., Pech, M., Sinner, F., Keitel, V., Venerito, M., Ebert, M. P., Teufel, A., Froelich, M. F."Radiomics-based prediction of HCC response to atezolizumab/bevacizumab". Oncology Letters 30, no. 4 (2025): 484. https://doi.org/10.3892/ol.2025.15229