1
|
Sivapathasundharam B: Shafer's Textbook of
Oral Pathology-E Book. Elsevier Health Sciences, 2016.
|
2
|
Philip N, Suneja B and Walsh L: Beyond
Streptococcus mutans: Clinical implications of the evolving
dental caries aetiological paradigms and its associated microbiome.
Br Dent J. 224:219–225. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Spatafora G, Li Y, He X, Cowan A and
Tanner ACR: . The evolving microbiome of dental caries.
Microorganisms. 12(121)2024.PubMed/NCBI View Article : Google Scholar
|
4
|
Fontana M, Young DA, Wolff MS, Pitts NB
and Longbottom C: Defining dental caries for 2010 and beyond. Dent
Clin North Am. 54:423–440. 2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Philip N, Suneja B and Walsh LJ:
Ecological approaches to dental caries prevention: Paradigm shift
or shibboleth? Caries Res. 52:153–165. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Nascimento MM: Approaches to modulate
biofilm ecology. Dent Clin North Am. 63:581–594. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Kannan S, Balakrishnan J, Ramachandran N,
Nair V and Vijayakumar K: Streptococcus mutans-The life on
human teeth-An extensive review on molecular mechanisms and
consequences for systemic health. Microbes Infect Dis, March, 2024
doi: 10.21608/mid.2024.266348.1781.
|
8
|
Zhan L: Rebalancing the caries microbiome
dysbiosis: Targeted treatment and sugar alcohols. Adv Dent Res.
29:110–116. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Frencken JE, Sharma P, Stenhouse L, Green
D, Laverty D and Dietrich T: Global epidemiology of dental caries
and severe periodontitis-A comprehensive review. J Clin
Periodontol. 44 (Suppl 18):S94–S105. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
GBD 2017 Oral Disorders Collaborators.
Bernabe E, Marcenes W, Hernandez CR, Bailey J, Abreu LG, Alipour V,
Amini S, Arabloo J, Arefi Z, et al: Global, regional, and national
levels and trends in burden of oral conditions from 1990 to 2017: A
systematic analysis for the Global Burden of Disease 2017 Study. J
Dent Res. 99:362–373. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
FDI World Dental Federation. The challenge
of oral disease-A call for global action. In: Benzian H, Williams
D, (eds.). The Oral Health Atlas. 2nd edition. FDI World Dental
Federation, pp16-21, 2015. Accessed on August 8, 2024. https://www.fdiworlddental.org/oral-health-atlas.
|
12
|
Loesche WJ, Bradbury DR and Woolfolk MP:
Reduction of dental decay in rampant caries individuals following
short-term kanamycin treatment. J Dent Res. 56:254–265.
1977.PubMed/NCBI View Article : Google Scholar
|
13
|
De Paola PF, Jordan HV and Berg J:
Temporary suppression of Streptococcus mutans in humans
through topical application of vancomycin. J Dent Res. 53:108–114.
1974.PubMed/NCBI View Article : Google Scholar
|
14
|
Reilly C, Rasmussen K, Selberg T, Stevens
J and Jones RS: Biofilm community diversity after exposure to 04%
stannous fluoride gels. J Appl Microbiol. 117:1798–809.
2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Marsh PD: In sickness and in health-what
does the oral microbiome mean to us? An ecological perspective. Adv
Dent Res. 29:60–65. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Li Y and Tanner A: Effect of antimicrobial
interventions on the oral microbiota associated with early
childhood caries. Pediatr Dent. 37:226–244. 2015.PubMed/NCBI
|
17
|
Huang X, Schulte RM, Burne RA and
Nascimento MM: Characterization of the arginolytic microflora
provides insights into pH homeostasis in human oral biofilms.
Caries Res. 49:165–176. 2015.PubMed/NCBI View Article : Google Scholar
|
18
|
Koopman JE, Röling WF, Buijs MJ, Sissons
CH, ten Cate JM, Keijser BJ, Crielaard W and Zaura E: Stability and
resilience of oral microcosms toward acidification and Candida
outgrowth by arginine supplementation. Microb Ecol. 69:422–433.
2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Yoo S, Murata RM and Duarte S:
Antimicrobial traits of tea- and cranberry-derived polyphenols
against Streptococcus mutans. Caries Res. 45:327–335.
2011.PubMed/NCBI View Article : Google Scholar
|
20
|
de Sousa DL, Lima RA, Zanin IC, Klein MI,
Janal MN and Duarte S: Effect of Twice-daily blue light treatment
on Matrix-rich biofilm development. PLoS One.
10(e0131941)2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Twetman S and Dhar V: Evidence of
effectiveness of current therapies to prevent and treat early
childhood caries. Pediatr Dent. 37:246–253. 2015.PubMed/NCBI
|
22
|
De Castro DT, Valente ML, da Silva CH,
Watanabe E, Siqueira RL, Schiavon MA, Alves OL and Dos Reis AC:
Evaluation of antibiofilm and mechanical properties of new
nanocomposites based on acrylic resins and silver vanadate
nanoparticles. Arch Oral Biol. 64:39–47. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Human Microbiome Project Consortium.
Structure, function and diversity of the healthy human microbiome.
Nature. 486:207–214. 2012.PubMed/NCBI View Article : Google Scholar
|
24
|
Keeney KM, Yurist-Doutsch S, Arrieta MC
and Finlay BB: Effects of antibiotics on human microbiota and
subsequent disease. Annu Rev Microbiol. 68:217–235. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Sullivan R, Santarpia P, Lavender S,
Gittins E, Liu Z, Anderson MH, He J, Shi W and Eckert R: Clinical
efficacy of a specifically targeted antimicrobial peptide mouth
rinse: Targeted elimination of Streptococcus mutans and
prevention of demineralization. Caries Res. 45:415–428.
2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Yang Y, Reipa V, Liu G, Meng Y, Wang X,
Mineart KP, Prabhu VM, Shi W, Lin NJ, He X and Sun J: pH-Sensitive
compounds for selective inhibition of Acid-producing bacteria. ACS
Appl Mater Interfaces. 10:8566–8573. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Horev B, Klein MI, Hwang G, Li Y, Kim D,
Koo H and Benoit DS: pH-activated nanoparticles for controlled
topical delivery of farnesol to disrupt oral biofilm virulence. ACS
Nano. 9:2390–2404. 2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha
PC, Cormode DP and Koo H: Nanocatalysts promote Streptococcus
mutans biofilm matrix degradation and enhance bacterial killing
to suppress dental caries in vivo. Biomaterials. 101:272–284.
2016.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhou H, Zhao H, Zheng J, Gao Y, Zhang Y,
Zhao F and Wang J: CRISPRs provide broad and robust protection to
oral microbial flora of gingival health against bacteriophage
challenge. Protein Cell. 6:541–545. 2015.PubMed/NCBI View Article : Google Scholar
|
30
|
Barrangou R and Marraffini LA: CRISPR-Cas
systems: Prokaryotes upgrade to adaptive immunity. Mol Cell.
54:234–244. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhang C, Quan R and Wang J: Development
and application of CRISPR/Cas9 technologies in genomic editing. Hum
Mol Genet. 27:R79–R88. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Rho M, Wu YW, Tang H, Doak TG and Ye Y:
Diverse CRISPRs evolving in human microbiomes. PLoS Genet.
8(e1002441)2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Yu N, Yang J, Mishina Y and Giannobile WV:
Genome editing: A new horizon for oral and craniofacial research. J
Dent Res. 98:36–45. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Chavez-Granados PA, Manisekaran R,
Acosta-Torres LS and Garcia-Contreras R: CRISPR/Cas gene-editing
technology and its advances in dentistry. Biochimie. 194:96–107.
2022.PubMed/NCBI View Article : Google Scholar
|
35
|
Karimian A, Azizian K, Parsian H, Rafieian
S, Shafiei-Irannejad V, Kheyrollah M, Yousefi M, Majidinia M and
Yousefi B: CRISPR/Cas9 technology as a potent molecular tool for
gene therapy. J Cell Physiol. 234:12267–12277. 2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Lone BA, Karna SKL, Ahmad F, Shahi N and
Pokharel YR: CRISPR/Cas9 system: A bacterial tailor for genomic
engineering. Genet Res Int. 2018(3797214)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhang F, Wen Y and Guo X: CRISPR/Cas9 for
genome editing: Progress, implications and challenges. Hum Mol
Genet. 23:R40–R46. 2014.PubMed/NCBI View Article : Google Scholar
|
38
|
Schwendicke F and Krois J: Precision
dentistry-what it is, where it fails (yet), and how to get there.
Clin Oral Investig. 26:3395–3403. 2022.PubMed/NCBI View Article : Google Scholar
|
39
|
Takahashi N and Nyvad B: The role of
bacteria in the caries process: Ecological perspectives. J Dent
Res. 90:294–303. 2011.PubMed/NCBI View Article : Google Scholar
|
40
|
Serbanescu MA, Cordova M, Krastel K, Flick
R, Beloglazova N, Latos A, Yakunin AF, Senadheera DB and
Cvitkovitch DG: Role of the Streptococcus mutans CRISPR-Cas
systems in immunity and cell physiology. J Bacteriol. 197:749–761.
2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Chen J, Li T, Zhou X, Cheng L, Huo Y, Zou
J and Li Y: Characterization of the clustered regularly interspaced
short palindromic repeats sites in Streptococcus mutans
isolated from early childhood caries patients. Arch Oral Biol.
83:174–180. 2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Tang B, Gong T, Zhou X, Lu M, Zeng J, Peng
X, Wang S and Li Y: Deletion of cas3 gene in Streptococcus
mutans affects biofilm formation and increases fluoride
sensitivity. Arch Oral Biol. 99:190–197. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Zhang A, Chen J, Gong T, Lu M, Tang B,
Zhou X and Li Y: Deletion of csn2 gene affects acid tolerance and
exopolysaccharide synthesis in Streptococcus mutans. Mol
Oral Microbiol. 35:211–221. 2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Kang DY, Kim A and Kim JN: CcpA and CodY
regulate CRISPR-Cas system of Streptococcus mutans.
Microbiol Spectr. 11(e0182623)2023.PubMed/NCBI View Article : Google Scholar
|
45
|
Gong T, Tang B, Zhou X, Zeng J, Lu M, Guo
X, Peng X, Lei L, Gong B and Li Y: Genome editing in
Streptococcus mutans through self-targeting CRISPR arrays.
Mol Oral Microbiol. 33:440–449. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Shaffer JR, Wang X, McNeil DW, Weyant RJ,
Crout R and Marazita ML: Genetic susceptibility to dental caries
differs between the sexes: A family-based study. Caries Res.
49:133–140. 2015.PubMed/NCBI View Article : Google Scholar
|
47
|
Ozturk A, Famili P and Vieira AR: The
antimicrobial peptide DEFB1 is associated with caries. J Dent Res.
89:631–636. 2010.PubMed/NCBI View Article : Google Scholar
|
48
|
Nireeksha N, Hegde MN, Shetty SS and
Kumari SN: FOK l Vitamin D receptor gene polymorphism and risk of
dental caries: A case-control study. Int J Dent.
2022(6601566)2022.PubMed/NCBI View Article : Google Scholar
|
49
|
Zakhary GM, Clark RM, Bidichandani SI,
Owen WL, Slayton RL and Levine M: Acidic proline-rich protein Db
and caries in young children. J Dent Res. 86:1176–1180.
2007.PubMed/NCBI View Article : Google Scholar
|
50
|
Wright JT, Hart TC, Hart PS, Simmons D,
Suggs C, Daley B, Simmer J, Hu J, Bartlett JD, Li Y, et al: Human
and mouse enamel phenotypes resulting from mutation or altered
expression of AMEL, ENAM, MMP20, and KLK4. Cells Tissues Organs.
189:224–229. 2009.PubMed/NCBI View Article : Google Scholar
|
51
|
Lacruz RS, Habelitz S, Wright JT and Paine
ML: Dental enamel formation and implications for oral health and
disease. Physiol Rev. 97:939–993. 2017.PubMed/NCBI View Article : Google Scholar
|
52
|
Shields RC, Walker AR, Maricic N,
Chakraborty B, Underhill SAM and Burne RA: Repurposing the
Streptococcus mutans CRISPR-Cas9 system to understand
essential gene function. PLoS Pathogens.
16(e1008344)2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Krzyściak W, Pluskwa KK, Jurczak A and
Kościelniak D: The pathogenicity of the Streptococcus genus. Eur J
Clin Microbiol Infect Dis. 32:1361–1376. 2013.PubMed/NCBI View Article : Google Scholar
|
54
|
Shields RC, Zeng L, Culp DJ and Burne RA:
Genomewide identification of essential genes and fitness
determinants of Streptococcus mutans UA159. mSphere.
3:e00031–18. 2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Guo C, Ma X, Gao F and Guo Y: Off-target
effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol.
11(1143157)2023.PubMed/NCBI View Article : Google Scholar
|
56
|
Schaefer KA, Wu WH, Colgan DF, Tsang SH,
Bassuk AG and Mahajan VB: Unexpected mutations after CRISPR-Cas9
editing in vivo. Nature Methods. 14:547–548. 2017.PubMed/NCBI View Article : Google Scholar
|
57
|
Yu N, Yang J, Mishina Y and Giannobile WV:
Genome editing: A new horizon for oral and craniofacial research. J
Dental Res. 98:36–45. 2019.PubMed/NCBI View Article : Google Scholar
|
58
|
Zhang XH, Tee LY, Wang XG, Huang QS and
Yang SH: Off-target effects in CRISPR/Cas9-mediated genome
engineering. Mol Ther Nucleic Acids. 4(e264)2015.PubMed/NCBI View Article : Google Scholar
|
59
|
Uribe RV, Rathmer C, Jahn LJ, Ellabaan
MMH, Li SS and Sommer MOA: Bacterial resistance to CRISPR-Cas
antimicrobials. Sci Rep. 11(17267)2021.PubMed/NCBI View Article : Google Scholar
|
60
|
Mayorga-Ramos A, Zúñiga-Miranda J,
Carrera-Pacheco SE, Barba-Ostria C and Guamán LP: CRISPR-Cas-based
antimicrobials: Design, challenges, and bacterial mechanisms of
resistance. ACS Infect Dis. 9:1283–1302. 2023.PubMed/NCBI View Article : Google Scholar
|
61
|
Pursey E, Sünderhauf D, Gaze WH, Westra ER
and van Houte S: CRISPR-Cas antimicrobials: Challenges and future
prospects. PLoS Pathog. 14(e1006990)2018.PubMed/NCBI View Article : Google Scholar
|
62
|
Giacaman RA, Fernández CE, Muñoz-Sandoval
C, León S, García-Manríquez N, Echeverría C, Valdés S, Castro RJ
and Gambetta-Tessini K: Understanding dental caries as a
non-communicable and behavioral disease: Management implications.
Front Oral Health. 3(764479)2022.PubMed/NCBI View Article : Google Scholar
|
63
|
Tao S, Chen H, Li N and Liang W: The
application of the CRISPR-Cas system in antibiotic resistance.
Infect Drug Resist. 15:4155–4168. 2022.PubMed/NCBI View Article : Google Scholar
|
64
|
Barbour A, Glogauer J, Grinfeld L,
Ostadsharif Memar R, Fine N, Tenenbaum H and Glogauer M: The role
of CRISPR-Cas in advancing precision periodontics. J Periodontal
Res. 56:454–461. 2021.PubMed/NCBI View Article : Google Scholar
|
65
|
Liu L, Helal SE and Peng N:
CRISPR-Cas-based engineering of probiotics. Biodes Res.
5(0017)2023.PubMed/NCBI View Article : Google Scholar
|
66
|
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X,
He X, Liu M, Li PF and Yu T: CRISPR/Cas9 therapeutics: Progress and
prospects. Sig Transduct Target Ther. 8(36)2023.PubMed/NCBI View Article : Google Scholar
|
67
|
Foss DV, Muldoon JJ, Nguyen DN, Carr D,
Sahu SU, Hunsinger JM, Wyman SK, Krishnappa N, Mendonsa R, Schanzer
EV, et al: Peptide-mediated delivery of CRISPR enzymes for the
efficient editing of primary human lymphocytes. Nat Biomed Eng.
7:647–660. 2023.PubMed/NCBI View Article : Google Scholar
|