
Gut‑lung axis microbiome: Towards precision medicine in respiratory disorders (Review)
- Authors:
- Sharanya Manoharan
- Oviya Ramalakshmi Iyappan
- Archana Prabahar
- Balu Bhasuran
- Kalpana Raja
-
Affiliations: Department of Bioinformatics, Stella Maris College, Chennai, Tamil Nadu 600086, India, Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India, Centre for Gene Regulation in Health and Disease, Department of Biology, Geology and Environmental Sciences, Cleveland State University, Cleveland, OH 44115‑2214, USA, School of Information, College of Communication and Information, 142 Collegiate Loop, Florida State University, Tallahassee, FL 32306‑2100, USA, Department of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, CT 06510, USA - Published online on: July 15, 2025 https://doi.org/10.3892/wasj.2025.376
- Article Number: 88
-
Copyright : © Manoharan et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
![]() |
![]() |
Miedema I, Feskens EJ, Heederik D and Kromhout D: Dietary determinants of long-term incidence of chronic nonspecific lung diseases. The zutphen study. Am J Epidemiol. 138:37–45. 1993.PubMed/NCBI View Article : Google Scholar | |
Wilson DO, Donahoe M, Rogers RM and Pennock BE: Metabolic rate and weight loss in chronic obstructive lung disease. JPEN J Parenter Enteral Nutr. 14:7–11. 1990.PubMed/NCBI View Article : Google Scholar | |
Han SN and Meydani SN: Vitamin E and infectious diseases in the aged. Proc Nutr Soc. 58:697–705. 1999.PubMed/NCBI View Article : Google Scholar | |
Tabak C, Feskens EJ, Heederik D, Kromhout D, Menotti A and Blackburn HW: Fruit and fish consumption: A possible explanation for population differences in COPD mortality (The Seven Countries Study). Eur J Clin Nutr. 52:819–825. 1998.PubMed/NCBI View Article : Google Scholar | |
DeMeo MT, Van de Graaff W, Gottlieb K, Sobotka P and Mobarhan S: Nutrition in acute pulmonary disease. Nutr Rev. 50:320–328. 1992.PubMed/NCBI View Article : Google Scholar | |
Ellis JA: The immunology of the bovine respiratory disease complex. Vet Clin North Am Food Anim Pract. 17:535–550, vi-vii. 2001.PubMed/NCBI View Article : Google Scholar | |
Furrie E: Probiotics and allergy. Proc Nutr Soc. 64:465–469. 2005.PubMed/NCBI View Article : Google Scholar | |
Behrouzi A, Nafari AH and Siadat SD: The significance of microbiome in personalized medicine. Clin Transl Med. 8(16)2019.PubMed/NCBI View Article : Google Scholar | |
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J and Chen ZS: Microbiota in Health and Diseases. Signal Transduct Target Ther. 7(135)2022.PubMed/NCBI View Article : Google Scholar | |
Liu XF, Shao JH, Liao YT, Wang LN, Jia Y, Dong PJ, Liu ZZ, He DD, Li C and Zhang X: Regulation of short-chain fatty acids in the immune system. Front Immunol. 14(1186892)2023.PubMed/NCBI View Article : Google Scholar | |
Brittain HK, Scott R and Thomas E: The rise of the genome and personalised medicine. Clin Med (Lond). 17:545–551. 2017.PubMed/NCBI View Article : Google Scholar | |
Lin BM, Grinde KE, Brody JA, Breeze CE, Raffield LM, Mychaleckyj JC, Thornton TA, Perry JA, Baier LJ, de las Fuentes L, et al: Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium. EBioMedicine. 63(103157)2021.PubMed/NCBI View Article : Google Scholar | |
Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, Jain D, Argos M, Arnett DK, Avery C, et al: Use of >100,000 NHLBI trans-omics for precision medicine (TOPMed) consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and hispanic/latino populations. PLoS Genet. 15(e1008500)2019.PubMed/NCBI View Article : Google Scholar | |
Eichler EE: Genetic variation, comparative genomics, and the diagnosis of disease. N Engl J Med. 381:64–74. 2019.PubMed/NCBI View Article : Google Scholar | |
Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H and Zhang C: Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front Cell Infect Microbiol. 11(716299)2021.PubMed/NCBI View Article : Google Scholar | |
Arapidi GP, Urban AS, Osetrova MS, Shender VO, Butenko IO, Bukato ON, Kuznetsov AA, Saveleva TM, Nos GA, Ivanova OM, et al: Non-human peptides revealed in blood reflect the composition of small intestine microbiota. BMC Biol. 22(178)2024.PubMed/NCBI View Article : Google Scholar | |
Davis OK and Rosenwaks Z: Personalized medicine or ‘one size fits all’? Fertil Steril. 101:922–923. 2014.PubMed/NCBI View Article : Google Scholar | |
NIH HMP Working Group. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, et al: The NIH human microbiome project. Genome Res. 19:2317–2323. 2009.PubMed/NCBI View Article : Google Scholar | |
Sender R, Fuchs S and Milo R: Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14(e1002533)2016.PubMed/NCBI View Article : Google Scholar | |
Martinez FJ, Erb-Downward JR and Huffnagle GB: Significance of the microbiome in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 10 (Suppl 1):S170–S179. 2013.PubMed/NCBI View Article : Google Scholar | |
Kamel M, Aleya S, Alsubih M and Aleya L: Microbiome dynamics: A paradigm shift in combatting infectious diseases. J Pers Med. 14(217)2024.PubMed/NCBI View Article : Google Scholar | |
Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E and Fol M: The intriguing connection between the gut and lung microbiomes. Pathogens. 13(1005)2024.PubMed/NCBI View Article : Google Scholar | |
Belaid A, Roméo B, Rignol G, Benzaquen J, Audoin T, Vouret-Craviari V, Brest P, Varraso R, von Bergen M, Hugo Marquette C, et al: Impact of the lung microbiota on development and progression of lung cancer. Cancers (Basel). 16(3342)2024.PubMed/NCBI View Article : Google Scholar | |
Borges RM, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM Jr, Metz TO, et al: Quantum chemistry calculations for metabolomics. Chem.Rev. 121:5633–5670. 2021.PubMed/NCBI View Article : Google Scholar | |
Natalini JG, Singh S and Segal LN: The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 21:222–235. 2023.PubMed/NCBI View Article : Google Scholar | |
Kennedy MS and Chang EB: The microbiome: Composition and locations. Prog Mol Biol Transl Sci. 176:1–42. 2020.PubMed/NCBI View Article : Google Scholar | |
Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P, Armstrong-James DPH, Adcock IM, Chotirmall SH, Chung KF and Hansbro PM: Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med. 7:907–920. 2019.PubMed/NCBI View Article : Google Scholar | |
Ritchie AI and Wedzicha JA: Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin Chest Med. 41:421–438. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang L, Cai Y, Garssen J, Henricks PAJ, Folkerts G and Braber S: The bidirectional gut-lung axis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 207:1145–1160. 2023.PubMed/NCBI View Article : Google Scholar | |
Rastogi S, Mohanty S, Sharma S and Tripathi P: Possible role of gut microbes and host's immune response in gut-lung homeostasis. Front Immunol. 13(954339)2022.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Teo SM, Méric G, Tang HHF, Zhu Q, Sanders JG, Vázquez-Baeza Y, Verspoor K, Vartiainen VA, Jousilahti P, et al: The gut microbiome is a significant risk factor for future chronic lung disease. J Allergy Clin. Immunol. 151:943–952. 2023.PubMed/NCBI View Article : Google Scholar | |
Koh A, De Vadder F, Kovatcheva-Datchary P and Bäckhed F: From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 165:1332–1345. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y, Huang X, Xiao Y, Yao S, Zhao Q, et al: Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10:946–956. 2017.PubMed/NCBI View Article : Google Scholar | |
Deguen S, Amuzu M, Simoncic V and Kihal-Talantikite W: Exposome and social vulnerability: An overview of the literature review. Int J Environ Res Public Health. 19(3534)2022.PubMed/NCBI View Article : Google Scholar | |
Wiertsema SP, van Bergenhenegouwen J, Garssen J and Knippels LMJ: The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 13(886)2021.PubMed/NCBI View Article : Google Scholar | |
Yang L, Yuan TJ, Wan Y, Li WW, Liu C, Jiang S and Duan JA: Quorum sensing: A new perspective to reveal the interaction between gut microbiota and host. Future Microbiol. 17:293–309. 2022.PubMed/NCBI View Article : Google Scholar | |
Xiao Y, Zou H, Li J, Song T, Lv W, Wang W, Wang Z and Tao S: Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: Current understanding and future perspectives. Gut Microbes. 14(2039048)2022.PubMed/NCBI View Article : Google Scholar | |
Kho ZY and Lal SK: The human gut microbiome-A potential controller of wellness and disease. Front Microbiol. 9(1835)2018.PubMed/NCBI View Article : Google Scholar | |
Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, Papazian L and Raoult D: High-level colonisation of the human gut by verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents. 41:149–155. 2013.PubMed/NCBI View Article : Google Scholar | |
Markus V, Paul AA, Teralı K, Özer N, Marks RS, Golberg K and Kushmaro A: Conversations in the Gut: The role of quorum sensing in normobiosis. Int J Mol Sci. 24(3722)2023.PubMed/NCBI View Article : Google Scholar | |
Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND and Kahleova H: The Effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 6(47)2019.PubMed/NCBI View Article : Google Scholar | |
Nagata N, Takeuchi T, Masuoka H, Aoki R, Ishikane M, Iwamoto N, Sugiyama M, Suda W, Nakanishi Y, Terada-Hirashima J, et al: Human gut microbiota and its metabolites impact immune responses in COVID-19 and its complications. Gastroenterology. 164:272–288. 2023.PubMed/NCBI View Article : Google Scholar | |
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, et al: Short-chain fatty-acid-producing bacteria: Key components of the human gut microbiota. Nutrients. 15(2211)2023.PubMed/NCBI View Article : Google Scholar | |
Maslowski KM and Mackay CR: Diet, gut microbiota and immune responses. Nat Immunol. 12:5–9. 2011.PubMed/NCBI View Article : Google Scholar | |
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 54:2325–2340. 2013.PubMed/NCBI View Article : Google Scholar | |
Miller TL and Wolin MJ: Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol. 62:1589–1592. 1996.PubMed/NCBI View Article : Google Scholar | |
Martino C, Zaramela LS, Gao B, Embree M, Tarasova J, Parker SJ, Wang Y, Chu H, Chen P, Lee KC, et al: Acetate reprograms gut microbiota during alcohol consumption. Nat Commun. 13(4630)2022.PubMed/NCBI View Article : Google Scholar | |
Priyadarshini M, Kotlo KU, Dudeja PK and Layden BT: Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol. 8:1091–1115. 2018.PubMed/NCBI View Article : Google Scholar | |
Nogal A, Louca P, Zhang X, Wells PM, Steves CJ, Spector TD, Falchi M, Valdes AM and Menni C: Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat. Front Microbiol. 12(711359)2021.PubMed/NCBI View Article : Google Scholar | |
Louis P and Flint HJ: Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 19:29–41. 2017.PubMed/NCBI View Article : Google Scholar | |
Canani RB, Costanzo MD, Leone L, Pedata M, Meli R and Calignano A: Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 17:1519–1528. 2011.PubMed/NCBI View Article : Google Scholar | |
Peredo-Lovillo A, Romero-Luna HE and Jiménez-Fernández M: Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Res Int. 136(109473)2020.PubMed/NCBI View Article : Google Scholar | |
Slavin J: Fiber and prebiotics: Mechanisms and health benefits. Nutrients. 5:1417–1435. 2013.PubMed/NCBI View Article : Google Scholar | |
Ramirez-Olea H, Reyes-Ballesteros B and Chavez-Santoscoy RA: Potential application of the probiotic as an adjuvant in the treatment of diseases in humans and animals: A systematic review. Front Microbiol. 13(993451)2022.PubMed/NCBI View Article : Google Scholar | |
Markowiak P and Śliżewska K: Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 9(1021)2017.PubMed/NCBI View Article : Google Scholar | |
Luo Y, De Souza C, Ramachandran M, Wang S, Yi H, Ma Z, Zhang L and Lin K: Precise oral delivery systems for probiotics: A review. J Control Release. 352:371–384. 2022.PubMed/NCBI View Article : Google Scholar | |
Cui L, Morris A, Huang L, Beck JM, Twigg HL III, von Mutius E and Ghedin E: The microbiome and the lung. Ann Am Thorac Soc. 11 (Suppl 4):S227–S232. 2014.PubMed/NCBI View Article : Google Scholar | |
Vijay A and Valdes AM: Role of the gut microbiome in chronic diseases: A narrative review. Eur J Clin Nutr. 76:489–501. 2022.PubMed/NCBI View Article : Google Scholar | |
Chen S, Kuhn M, Prettner K, Yu F, Yang T, Bärnighausen T, Bloom DE and Wang C: The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: A health-augmented macroeconomic modelling study. Lancet Glob Health. 11:e1183–e1193. 2023.PubMed/NCBI View Article : Google Scholar | |
Xiong T, Bai X, Wei X, Wang L, Li F, Shi H and Shi Y: Exercise rehabilitation and chronic respiratory diseases: effects, mechanisms, and therapeutic benefits. Int J Chron Obstruct Pulmon Dis. 18:1251–1266. 2023.PubMed/NCBI View Article : Google Scholar | |
Mattiuzzi C and Lippi G: Worldwide asthma epidemiology: Insights from the global health data exchange database. Int Forum Allergy Rhinol. 10:75–80. 2020.PubMed/NCBI View Article : Google Scholar | |
Halpin DMG, Faner R, Sibila O, Badia JR and Agusti A: Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 Infection? Lancet Respir Med. 8:436–438. 2020.PubMed/NCBI View Article : Google Scholar | |
Weinberg F, Dickson RP, Nagrath D and Ramnath N: The lung microbiome: A central mediator of host inflammation and metabolism in lung cancer patients? Cancers (Basel). 13(13)2020.PubMed/NCBI View Article : Google Scholar | |
Millen BE, Abrams S, Adams-Campbell L, Anderson CA, Brenna JT, Campbell WW, Clinton S, Hu F, Nelson M, Neuhouser ML, et al: The 2015 dietary guidelines advisory committee scientific report: Development and major conclusions. Adv Nutr. 7:438–444. 2016.PubMed/NCBI View Article : Google Scholar | |
Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, et al: Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell. 178:1115–1131.e15. 2019.PubMed/NCBI View Article : Google Scholar | |
Tan-Shalaby J: Ketogenic diets and cancer: Emerging evidence. Fed Pract. 34 (Suppl 1):37S–42S. 2017.PubMed/NCBI | |
Vieira RS, Castoldi A, Basso PJ, Hiyane MI, Câmara NOS and Almeida RR: Butyrate attenuates lung inflammation by negatively modulating Th9 cells. Front Immunol. 10(67)2019.PubMed/NCBI View Article : Google Scholar | |
Zhao H and Jin X: Causal associations between dietary antioxidant vitamin intake and lung cancer: A mendelian randomization study. Front Nutr. 9(965911)2022.PubMed/NCBI View Article : Google Scholar | |
Hagihara M, Kato H, Yamashita M, Shibata Y, Umemura T, Mori T, Hirai J, Asai N, Mori N and Mikamo H: Lung cancer progression alters lung and gut microbiomes and lipid metabolism. Heliyon. 10(e23509)2023.PubMed/NCBI View Article : Google Scholar | |
Gui Q, Li H, Wang A, Zhao X, Tan Z, Chen L, Xu K and Xiao C: The association between gut butyrate-producing bacteria and non-small-cell lung cancer. J Clin Lab Anal. 34(e23318)2020.PubMed/NCBI View Article : Google Scholar | |
O'Shaughnessy M, Sheils O and Baird AM: The lung microbiome in COPD and lung cancer: Exploring the potential of metal-based drugs. Int J Mol Sci. 24(12296)2023.PubMed/NCBI View Article : Google Scholar | |
Goto T: Airway microbiota as a modulator of lung cancer. Int J Mol Sci. 21(3044)2020.PubMed/NCBI View Article : Google Scholar | |
An J, Kim H and Yang KM: An aqueous extract of a species induces apoptosis and inhibits invasiveness of non-small cell lung cancer cells. J Microbiol. Biotechnol. 30:885–893. 2020.PubMed/NCBI View Article : Google Scholar | |
Takada K, Shimokawa M, Takamori S, Shimamatsu S, Hirai F, Tagawa T, Okamoto T, Hamatake M, Tsuchiya-Kawano Y, Otsubo K, et al: Clinical impact of probiotics on the efficacy of anti-PD-1 monotherapy in patients with nonsmall cell lung cancer: A multicenter retrospective survival analysis study with inverse probability of treatment weighting. Int J Cancer. 149:473–482. 2021.PubMed/NCBI View Article : Google Scholar | |
Tomita Y, Ikeda T, Sakata S, Saruwatari K, Sato R, Iyama S, Jodai T, Akaike K, Ishizuka S, Saeki S and Sakagami T: Association of probiotic therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol Res. 8:1236–1242. 2020.PubMed/NCBI View Article : Google Scholar | |
Xiao X, Cao Y and Chen H: Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells. J Cell Biochem. 119:3563–3573. 2018.PubMed/NCBI View Article : Google Scholar | |
Corrêa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR and Ryffel B: Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders. Front Nutr. 9(1011732)2022.PubMed/NCBI View Article : Google Scholar | |
Gokulan K, Joshi M, Khare S and Bartter T: Lung microbiome, gut-lung axis and chronic obstructive pulmonary disease. Curr Opin Pulm Med. 28:134–138. 2022.PubMed/NCBI View Article : Google Scholar | |
Song Q, Chen P and Liu XM: The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD. Respir Res. 22(39)2021.PubMed/NCBI View Article : Google Scholar | |
Ding K, Chen J, Zhan W, Zhang S, Chen Y, Long S and Lei M: Microbiome links cigarette smoke-induced chronic obstructive pulmonary disease and dietary fiber via the gut-lung axis: A narrative review. COPD. 19:10–17. 2021.PubMed/NCBI View Article : Google Scholar | |
Cabrera-Rubio R, Garcia-Núñez M, Setó L, Antó JM, Moya A, Monsó E and Mira A: Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol. 50:3562–3568. 2012.PubMed/NCBI View Article : Google Scholar | |
Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB and Curtis JL: Spatial variation in the healthy human lung microbiome and the adapted Island model of lung biogeography. Ann Am Thorac Soc. 12:821–830. 2015.PubMed/NCBI View Article : Google Scholar | |
Karakasidis E, Kotsiou OS and Gourgoulianis KI: Lung and Gut Microbiome in COPD. J Pers Med. 13(804)2023.PubMed/NCBI View Article : Google Scholar | |
Wedzicha JA and Seemungal TA: COPD Exacerbations: Defining their cause and prevention. Lancet. 370:786–796. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, Tal-Singer R, Johnston SL, Ramsheh MY, Barer MR, et al: Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 47:1082–1092. 2016.PubMed/NCBI View Article : Google Scholar | |
Wedzicha JA and Donaldson GC: Exacerbations of chronic obstructive pulmonary disease. Respir Care. 48:1204–1213; discussion 1213-1215. 2003.PubMed/NCBI | |
Xue Q, Xie Y, He Y, Yu Y, Fang G, Yu W, Wu J, Li J, Zhao L, Deng X, et al: Lung microbiome and cytokine profiles in different disease states of COPD: A cohort study. Sci Rep. 13(5715)2023.PubMed/NCBI View Article : Google Scholar | |
Varraso R, Chiuve SE, Fung TT, Barr RG, Hu FB, Willett WC and Camargo CA: Alternate healthy eating index 2010 and risk of chronic obstructive pulmonary disease among US women and men: Prospective study. BMJ. 350(h286)2015.PubMed/NCBI View Article : Google Scholar | |
Yang L, Li N, Yi X and Wang Z: The translational potential of the lung microbiome as a biomarker and a therapeutic target for chronic obstructive pulmonary disease. Interdiscip. Med. 1(e20230023)2023. | |
Loverdos K, Bellos G, Kokolatou L, Vasileiadis I, Giamarellos E, Pecchiari M, Koulouris N, Koutsoukou A and Rovina N: Lung microbiome in asthma: Current perspectives. J Clin Med Res. 8(1967)2019.PubMed/NCBI View Article : Google Scholar | |
Valverde-Molina J and García-Marcos L: Microbiome and asthma: Microbial dysbiosis and the origins, phenotypes, persistence, and severity of asthma. Nutrients. 15(486)2023.PubMed/NCBI View Article : Google Scholar | |
Aziz N and Benjamin B: Activation of natural killer cells by probiotics. For Immunopathol Dis Therap. 7:41–55. 2016.PubMed/NCBI View Article : Google Scholar | |
Mazziotta C, Tognon M, Martini F, Torreggiani E and Rotondo JC: Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells. 12(184)2023.PubMed/NCBI View Article : Google Scholar | |
Salva S, Villena J and Alvarez S: Immunomodulatory activity of lactobacillus rhamnosus strains isolated from goat milk: impact on intestinal and respiratory infections. Int J Food Microbiol. 141:82–89. 2010.PubMed/NCBI View Article : Google Scholar | |
Kalliomäki M, Salminen S, Poussa T and Isolauri E: Probiotics during the first 7 years of life: A cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol. 119:1019–1021. 2007.PubMed/NCBI View Article : Google Scholar | |
Hougee S, Vriesema AJM, Wijering SC, Knippels LM, Folkerts G, Nijkamp FP, Knol J and Garssen J: Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: A bacterial strain comparative study. Int Arch Allergy Immunol. 151:107–117. 2010.PubMed/NCBI View Article : Google Scholar | |
Zuany-Amorim C, Sawicka E, Manlius C, Le Moine A, Brunet LR, Kemeny DM, Bowen G, Rook G and Walker C: Suppression of airway eosinophilia by killed mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med. 8:625–629. 2002.PubMed/NCBI View Article : Google Scholar | |
Mortaz E, Adcock IM, Folkerts G, Barnes PJ, Paul Vos A and Garssen J: Probiotics in the management of lung diseases. Mediators Inflamm. 2013(751068)2013.PubMed/NCBI View Article : Google Scholar | |
Karim A, Muhammad T, Shahid Iqbal M and Qaisar R: A multistrain probiotic improves handgrip strength and functional capacity in patients with COPD: A randomized controlled trial. Arch Gerontol Geriatr. 102(104721)2022.PubMed/NCBI View Article : Google Scholar | |
Vasconcelos JA, Mota AS, Olímpio F, Rosa PC, Damaceno-Rodrigues N, de Paula Vieira R, Taddei CR and Aimbire F: Lactobacillus rhamnosus modulates lung inflammation and mitigates gut dysbiosis in a murine model of asthma-COPD overlap syndrome. Probiotics Antimicrob Proteins. 17:588–605. 2025.PubMed/NCBI View Article : Google Scholar | |
Bikov A, Dragonieri S, Csoma B, Mazzuca C, Finamore P, Rocchi G, Putignani L, Guarino M and Scarlata S: The role of gut bacteriome in asthma, chronic obstructive pulmonary disease and obstructive sleep apnoea. Microorganisms. 10(2457)2022.PubMed/NCBI View Article : Google Scholar | |
Lai HC, Lin TL, Chen TW, Kuo YL, Chang CJ, Wu TR, Shu CC, Tsai YH, Swift S and Lu CC: Gut microbiota modulates COPD pathogenesis: Role of anti-inflammatory lipopolysaccharide. Gut. 71:309–321. 2022.PubMed/NCBI View Article : Google Scholar | |
Maniar K, Singh V, Moideen A, Bhattacharyya R, Chakrabarti A and Banerjee D: Inhalational supplementation of metformin butyrate: A strategy for prevention and cure of various pulmonary disorders. Biomed Pharmacother. 107:495–506. 2018.PubMed/NCBI View Article : Google Scholar | |
Venzon M, Bernard-Raichon L, Klein J, Axelrad JE, Hussey GA, Sullivan AP, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, Gago J, et al: Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation. Res Sq [Preprint] rs.3.rs-726620, 2021. | |
Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, et al: The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The perspectives of clinical immunologists from China. Clin. Immunol. 214(108393)2020.PubMed/NCBI View Article : Google Scholar | |
Karst SM: The influence of commensal bacteria on infection with enteric viruses. Nat Rev Microbiol. 14:197–204. 2016.PubMed/NCBI View Article : Google Scholar | |
Viana SD, Nunes S and Reis F: ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities-role of gut microbiota dysbiosis. Ageing Res Rev. 62(101123)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Penninger JM, Li Y, Zhong N and Slutsky AS: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 46:586–590. 2020.PubMed/NCBI View Article : Google Scholar | |
Domínguez-Díaz C, García-Orozco A, Riera-Leal A, Padilla-Arellano JR and Fafutis-Morris M: Microbiota and its role on viral evasion: Is it with us or against us? Front Cell Infect Microbiol. 9(256)2019.PubMed/NCBI View Article : Google Scholar | |
Lee H and Ko G: Antiviral effect of vitamin a on norovirus infection via modulation of the gut microbiome. Sci Rep. 6(25835)2016.PubMed/NCBI View Article : Google Scholar | |
Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, Esaulova E, Artyomov MN, Morales DJ, Holtzman MJ, et al: The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 357:498–502. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Z, MacLeod DT and Di Nardo A: Commensal bacteria lipoteichoic acid increases skin mast cell antimicrobial activity against vaccinia viruses. J Immunol. 189:1551–1558. 2012.PubMed/NCBI View Article : Google Scholar | |
Gonzalez-Perez G and Lamousé-Smith ES: Gastrointestinal microbiome dysbiosis in infant mice alters peripheral CD8 T cell receptor signaling. Front Immunol. 8(265)2017.PubMed/NCBI View Article : Google Scholar | |
Belkacem N, Serafini N, Wheeler R, Derrien M, Boucinha L, Couesnon A, Cerf-Bensussan N, Gomperts Boneca I, Di Santo JP, Taha MK and Bourdet-Sicard R: Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS One. 12(e0184976)2017.PubMed/NCBI View Article : Google Scholar | |
Aan FJ, Glibetic N, Montoya-Uribe V and Matter ML: COVID-19 and the microbiome: The gut-lung connection. Comprehensive Gut Microbiota. 442–458. 2022. | |
Malik JA, Ahmed S, Yaseen Z, Alanazi M, Alharby TN, Alshammari HA and Anwar S: Association of SARS-CoV-2 and polypharmacy with gut-lung axis: From pathogenesis to treatment. ACS Omega. 7:33651–33665. 2022.PubMed/NCBI View Article : Google Scholar | |
Youssef M, Ahmed HY, Zongo A, Korin A, Zhan F, Hady E, Umair M, Shahid Riaz Rajoka M, Xiong Y and Li B: Probiotic supplements: Their strategies in the therapeutic and prophylactic of human life-threatening diseases. Int J Mol Sci. 22(11290)2021.PubMed/NCBI View Article : Google Scholar | |
So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT, Shanahan ER, Staudacher HM and Campbell KL: Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am J Clin Nutr. 107:965–983. 2018.PubMed/NCBI View Article : Google Scholar | |
Sadremomtaz A, Al-Dahmani ZM, Ruiz-Moreno AJ, Monti A, Wang C, Azad T, Bell JC, Doti N, Velasco-Velázquez MA, de Jong D, et al: Synthetic peptides that antagonize the angiotensin-converting enzyme-2 (ACE-2) interaction with SARS-CoV-2 receptor binding spike protein. J Med Chem. 65:2836–2847. 2022.PubMed/NCBI View Article : Google Scholar | |
Ceccarelli G, Marazzato M, Celani L, Lombardi F, Piccirilli A, Mancone M, Trinchieri V, Pugliese F, Mastroianni CM and d'Ettorre G: Oxygen sparing effect of bacteriotherapy in COVID-19. Nutrients. 13(2898)2021.PubMed/NCBI View Article : Google Scholar | |
Lim WS: Pneumonia-Overview. In: Encyclopedia of Respiratory Medicine. Elsevier, Oxford, PH, pp185-197, 2022. | |
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, et al: Harnessing the human gut microbiota: An emerging frontier in combatting multidrug-resistant bacteria. Front Immunol. 16(1563450)2025.PubMed/NCBI View Article : Google Scholar | |
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R and Stanton C: Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 11(e1260)2022.PubMed/NCBI View Article : Google Scholar | |
Dongre DS, Saha UB and Saroj SD: Exploring the role of gut microbiota in antibiotic resistance and prevention. Ann Med. 57(2478317)2025.PubMed/NCBI View Article : Google Scholar | |
de Steenhuijsen Piters WA, Huijskens EG, Wyllie AL, Biesbroek G, van den Bergh MR, Veenhoven RH, Wang X, Trzciński K, Bonten MJ, Rossen JW, et al: Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J. 10:97–108. 2016.PubMed/NCBI View Article : Google Scholar | |
Jenior ML, Leslie JL, Young VB and Schloss PD: Alters the structure and metabolism of distinct cecal microbiomes during initial infection to promote sustained colonization. mSphere. 3:e00261–18. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang X, Qi Y and Zheng H: Dietary polyphenol, gut microbiota, and health benefits. Antioxidants (Basel). 11(1212)2022.PubMed/NCBI View Article : Google Scholar | |
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al: A core gut microbiome in obese and lean twins. Nature. 457:480–484. 2009.PubMed/NCBI View Article : Google Scholar | |
Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, et al: Genomic variation landscape of the human gut microbiome. Nature. 493:45–50. 2012.PubMed/NCBI View Article : Google Scholar | |
Armour CR, Nayfach S, Pollard KS and Sharpton TJ: A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. mSystems. 4:e00332–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Ye SH, Siddle KJ, Park DJ and Sabeti PC: Benchmarking metagenomics tools for taxonomic classification. Cell. 178:779–794. 2019.PubMed/NCBI View Article : Google Scholar | |
Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C and Iliopoulos I: Metagenomics: Tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights. 9:75–88. 2015.PubMed/NCBI View Article : Google Scholar | |
de Vries JJC, Brown JR, Couto N, Beer M, Le Mercier P, Sidorov I, Papa A, Fischer N, Oude Munnink BB, Rodriquez C, et al: Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: Bioinformatic analysis and reporting. J Clin Virol. 138(104812)2021.PubMed/NCBI View Article : Google Scholar | |
Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW and Zheng SS: Application of metagenomics in the human gut microbiome. World J Gastroenterol. 21:803–814. 2015.PubMed/NCBI View Article : Google Scholar | |
Ventura M, Turroni F, Canchaya C, Vaughan EE, O'Toole PW and van Sinderen D: Microbial diversity in the human intestine and novel insights from metagenomics. Front Biosci (Landmark Ed). 14:3214–3221. 2009.PubMed/NCBI View Article : Google Scholar | |
Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD and Finn RD: A new genomic blueprint of the human gut microbiota. Nature. 568:499–504. 2019.PubMed/NCBI View Article : Google Scholar | |
Gmiter D, Nawrot S, Pacak I, Zegadło K and Kaca W: Towards a better understanding of the bacterial pan-genome. Acta universitatis lodziensis. Folia Biologica Et Oecologica. 17:84–96. 2021. | |
Shakya M, Lo CC and Chain PSG: Advances and challenges in metatranscriptomic analysis. Front Genet. 10(904)2019.PubMed/NCBI View Article : Google Scholar | |
Heintz-Buschart A and Wilmes P: Human gut microbiome: Function matters. Trends Microbiol. 26:563–574. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Hu Y, Liu F, Cao J, Lv N, Zhu B, Zhang G and Gao GF: Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ Int. 138(105649)2020.PubMed/NCBI View Article : Google Scholar | |
Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K and Narasimhan G: Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online. 12 (Suppl 1):S5–S16. 2016.PubMed/NCBI View Article : Google Scholar | |
Lai LA, Tong Z, Chen R and Pan S: Metaproteomics study of the gut microbiome. Methods Mol Biol. 1871:123–132. 2019.PubMed/NCBI View Article : Google Scholar | |
Larsen PE and Dai Y: Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience. 4(42)2015.PubMed/NCBI View Article : Google Scholar | |
Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL and Jansson JK: Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3:179–189. 2009.PubMed/NCBI View Article : Google Scholar | |
Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J, Dorrestein PC, Turnbaugh PJ and Knight R: The Intestinal Metabolome: An Intersection between Microbiota and Host. Gastroenterology. 146:1470–1476. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Guo J, Hu G and Zhu H: Gene prediction in metagenomic fragments based on the SVM Algorithm. BMC Bioinformatics. 14 (Suppl 5)(S12)2013.PubMed/NCBI View Article : Google Scholar | |
Han J, Zhang H and Ning K: Techniques for learning and transferring knowledge for microbiome-based classification and prediction: Review and assessment. Brief Bioinform. 26(bbaf015)2024.PubMed/NCBI View Article : Google Scholar | |
Bakir-Gungor B, Temiz M, Jabeer A, Wu D and Yousef M: microBiomeGSM: The identification of taxonomic biomarkers from metagenomic data using grouping, scoring and modeling (G-S-M) approach. Front Microbiol. 14(1264941)2023.PubMed/NCBI View Article : Google Scholar | |
Hemmati MA, Monemi M, Asli S, Mohammadi S, Foroozanmehr B, Haghmorad D, Oksenych V and Eslami M: Using new technologies to analyze gut microbiota and predict cancer risk. Cells. 13(1987)2024.PubMed/NCBI View Article : Google Scholar | |
Romano S, Wirbel J, Ansorge R, Schudoma C, Ducarmon QR, Narbad A and Zeller G: Machine learning-based meta-analysis reveals gut microbiome alterations associated with Parkinson's disease. Nat Commun. 16(4227)2025.PubMed/NCBI View Article : Google Scholar | |
Vilne B, Ķibilds J, Siksna I, Lazda I, Valciņa O and Krūmiņa A: Could artificial intelligence/machine learning and inclusion of diet-gut microbiome interactions improve disease risk prediction? Case study: Coronary artery disease. Front Microbiol. 13(627892)2022.PubMed/NCBI View Article : Google Scholar | |
Curry KD, Nute MG and Treangen TJ: It takes guts to learn: Machine learning techniques for disease detection from the gut microbiome. Emerg Top Life Sci. 5:815–827. 2021.PubMed/NCBI View Article : Google Scholar | |
Manandhar I, Alimadadi A, Aryal S, Munroe PB, Joe B and Cheng X: Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol. 320:G328–G337. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu W, Fang X, Zhou Y, Dou L and Dou T: Machine learning-based investigation of the relationship between gut microbiome and obesity status. Microbes Infect. 24(104892)2022.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Wu T, Lu W, Yuan W, Pan M, Lee YK, Zhao J, Zhang H, Chen W, Zhu J and Wang H: Predicting the role of the human gut microbiome in constipation using machine-learning methods: A meta-analysis. Microorganisms. 9(2149)2021.PubMed/NCBI View Article : Google Scholar | |
Gou W, Ling CW, He Y, Jiang Z, Fu Y, Xu F, Miao Z, Sun TY, Lin JS, Zhu HL, et al: Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care. 44:358–366. 2021.PubMed/NCBI View Article : Google Scholar | |
Aryal S, Alimadadi A, Manandhar I, Joe B and Cheng X: Machine learning strategy for gut microbiome-based diagnostic screening of cardiovascular disease. Hypertension. 76:1555–1562. 2020.PubMed/NCBI View Article : Google Scholar | |
Kaur H, Singh Y, Singh S and Singh RB: Gut microbiome-mediated epigenetic regulation of brain disorder and application of machine learning for multi-omics data analysis1. Genome. 64:355–371. 2021.PubMed/NCBI View Article : Google Scholar | |
Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, Gasbarrini A and Tortora G: Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol. 17:635–648. 2020.PubMed/NCBI View Article : Google Scholar | |
Lee HJ, Hong JK, Kim JK, Kim DH, Jang SW, Han SW and Yoon IY: Effects of probiotic NVP-1704 on mental health and sleep in healthy Adults: An 8-week randomized, double-blind, placebo-controlled trial. Nutrients. 13(2660)2021.PubMed/NCBI View Article : Google Scholar | |
Kang DW, Adams JB, Vargason T, Santiago M, Hahn J and Krajmalnik-Brown R: Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy. mSphere. 5:e00314–20. 2020.PubMed/NCBI View Article : Google Scholar | |
Tarutani S, Omori M, Ido Y, Yano M, Komatsu T and Okamura T: Effects of 4G-Beta-D-galactosylsucrose in patients with depression: A randomized, double-blinded, placebo-controlled, parallel-group comparative study. J Psychiatr. Res. 148:110–120. 2022.PubMed/NCBI View Article : Google Scholar | |
Philip Mani A, Balasubramanian B, Mali LA, Joseph KS, Meyyazhagan A, Pappuswamy M and Joseph BV: The role of the gut microbiota in neurodegenerative diseases. Microbiol Res. 15:489–507. 2024. | |
Zhu X, Li B, Lou P, Dai T, Chen Y, Zhuge A, Yuan Y and Li L: The relationship between the gut microbiome and neurodegenerative diseases. Neurosci Bull. 37:1510–1522. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Chen Y, Wang Z, Xie G, Liu M, Yuan B, Chai H, Wang W and Chen P: Implications of gut microbiota in neurodegenerative diseases. Front Immunol. 13(785644)2022.PubMed/NCBI View Article : Google Scholar | |
Ma YY, Li X, Yu JT and Wang YJ: Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener. 13(12)2024.PubMed/NCBI View Article : Google Scholar | |
Jain A, Madkan S and Patil P: The role of gut microbiota in neurodegenerative diseases: Current insights and therapeutic implications. Cureus. 15(e47861)2023.PubMed/NCBI View Article : Google Scholar |