1
|
Nayak JB, Chaudhary JH, Bhavsar PP,
Anjaria PA, Brahmbhatt MN and Mistry UP: Rabies: Incurable
biological threat. In: Zoonosis of Public Health Interest.
IntechOpen. London, 2022.
|
2
|
World Health organization (WHO). In: WHO
Expert Consultation on Rabies: Third Report. Abela-Ridder B (ed).
WHO, Geneva, 2018.
|
3
|
World Health Organization (WHO). Rabies -
India. WHO, Geneva. https://www.who.int/india/health-topics/rabies.
|
4
|
World Health Organization (WHO). Rabies.
WHO, Geneva, 2023. https://www.who.int/news-room/fact-sheets/detail/rabies.
|
5
|
Wada YA, Mazlan M, Noordin MM, Mohd-Lila
MA, Fong LS, Ramanoon SZ and Zahli NIU: Rabies epidemiology in
Malaysia (2015-2023): A cross-sectional insights and strategies for
control. Vaccine. 42(126371)2024.PubMed/NCBI View Article : Google Scholar
|
6
|
Yu Q, Liu J, Zhao H, Chen H, Xiang Y, Liu
Q, Mei L, Zhang W, Cheng M, Li Z, et al: Canine rabies vaccination,
surveillance and public awareness programme in Beijing, China,
2014-2024. Bull World Health Organ. 103:247–254. 2025.PubMed/NCBI View Article : Google Scholar
|
7
|
Gnanadurai CW, Huang CT, Kumar D and Fu
ZF: Novel approaches to the prevention and treatment of rabies. Int
J Virol Stud Res. 3:8–16. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
WHO Rabies Modelling Consortium. The
potential effect of improved provision of rabies post-exposure
prophylaxis in Gavi-eligible countries: A modelling study. Lancet
Infect Dis. 19:102–111. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Beasley EA, Wallace RM, Coetzer A, Nel LH
and Pieracci EG: Roles of traditional medicine and traditional
healers for rabies prevention and potential impacts on
post-exposure prophylaxis: A literature review. PLoS Negl Trop Dis.
16(e0010087)2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Sreenivasan N, Li A, Shiferaw M, Tran CH,
Wallace R, Blanton J, Knopf L, Abela-Ridder B and Hyde T: Working
group on Rabies PEP logistics. Overview of rabies post-exposure
prophylaxis access, procurement and distribution in selected
countries in Asia and Africa, 2017-2018. Vaccine. 37 (Suppl
1):A6–A13. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Uzundurukan A, Nelson M, Teske C, Islam
MS, Mohamed E, Christy JV, Martin HJ, Muratov E, Glover S and Fuoco
D: Meta-analysis and review of in silico methods in drug discovery
- part 1: Technological evolution and trends from big data to
chemical space. Pharmacogenomics J. 25(8)2025.PubMed/NCBI View Article : Google Scholar
|
12
|
Alazman I, Mishra MN, Alkahtani BS and
Goswami P: Computational analysis of rabies and its solution by
applying a fractional operator. Appl Math Sci Eng.
32(2340607)2024.
|
13
|
Knobel DL, Jackson AC, Bingham J, Ertl
HCJ, Gibson AD, Hughes D, Joubert K, Mani RS, Mohr BJ, Moore SM, et
al: A one medicine mission for an effective rabies therapy. Front
Vet Sci. 9(867382)2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Gupta Y, Savytskyi OV, Coban M, Venugopal
A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P
and Caulfield TR: Protein structure-based in-silico approaches to
drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med.
91(101151)2023.PubMed/NCBI View Article : Google Scholar
|
15
|
Prinsa Saha S, Bulbul MZH, Ozeki Y, Alamri
MA and Kawsar SMA: Flavonoids as potential KRAS inhibitors: DFT,
molecular docking, molecular dynamics simulation and ADMET
analyses. J Asian Nat Prod Res. 26:955–992. 2024.PubMed/NCBI View Article : Google Scholar
|
16
|
Alamri MA, Prinsa Kawsar SMA and Saha S:
Exploring marine-derived bioactive compounds for dual inhibition of
Pseudomonas aeruginosa LpxA and LpxD: Integrated bioinformatics and
cheminformatics approaches. Mol Divers. 29:1033–1047.
2025.PubMed/NCBI View Article : Google Scholar
|
17
|
Wang PH and Xing L: The roles of rabies
virus structural proteins in immune evasion and implications for
vaccine development. Can J Microbiol. 70:461–469. 2024.PubMed/NCBI View Article : Google Scholar
|
18
|
Lian M, Hueffer K and Weltzin MM:
Interactions between the rabies virus and nicotinic acetylcholine
receptors: A potential role in rabies virus induced behavior
modifications. Heliyon. 8(e10434)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Nakagawa K, Kobayashi Y, Ito N, Suzuki Y,
Okada K, Makino M, Goto H, Takahashi T and Sugiyama M: Molecular
function analysis of rabies virus RNA polymerase L protein by using
an L gene-deficient virus. J Virol. 91:e00826–17. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Lu Y, Cheng L and Liu J: Optimisation of
inhibitory peptides targeting phosphoprotein of rabies virus. Int J
Pept Res Ther. 26:1043–1049. 2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Tomar NR, Singh V, Marla SS, Chandra R,
Kumar R and Kumar A: Molecular docking studies with rabies virus
glycoprotein to design viral therapeutics Indian J Pharm. Sci.
72:486–490. 2010.PubMed/NCBI View Article : Google Scholar
|
22
|
Yang F, Lin S, Ye F, Yang J, Qi J, Chen Z,
Lin X, Wang J, Yue D, Cheng Y, et al: Structural analysis of rabies
virus glycoprotein reveals pH-dependent conformational changes and
interactions with a neutralizing antibody. Cell Host Microbe.
27:441–453.e7. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Kiriwan D and Choowongkomon K: In silico
structural elucidation of the rabies RNA-dependent RNA polymerase
(RdRp) toward the identification of potential rabies virus
inhibitors. J Mol Model. 27(183)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Jumper J, Evans R, Pritzel A, Green T,
Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,
Potapenko A, et al: Highly accurate protein structure prediction
with AlphaFold. Nature. 596:583–589. 2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Sahoo D, Katkar GD, Khandelwal S,
Behroozikhah M, Claire A, Castillo V, Tindle C, Fuller M, Taheri S,
Rogers TF, et al: AI-guided discovery of the invariant host
response to viral pandemics. EbioMedicine.
68(103390)2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Yurina V and Adianingsih OR: Predicting
epitopes for vaccine development using bioinformatics tools. Ther
Adv Vaccines Immunother. 10(25151355221100218)2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Elste J, Saini A, Mejia-Alvarez R, Mejía
A, Millán-Pacheco C, Swanson-Mungerson M and Tiwari V: Significance
of artificial intelligence in the study of virus-host cell
interactions. Biomolecules. 14(911)2024.PubMed/NCBI View Article : Google Scholar
|
28
|
Tarasova O and Poroikov V: Machine
learning in discovery of new antivirals and optimization of viral
infections therapy. Curr Med Chem. 28:7840–7861. 2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Almulhim M, Ghasemian A, Memariani M,
Karami F, Yassen ASA, Alexiou A, Papadakis M and Batiha GE: Drug
repositioning as a promising approach for the eradication of
emerging and re-emerging viral agents. Mol Divers: Mar 18, 2025
(Epub ahead of print).
|
30
|
Koujah L, Shukla D and Naqvi AR:
CRISPR-Cas based targeting of host and viral genes as an antiviral
strategy. Semin Cell Dev Biol. 96:53–64. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Fooks A, Cliquet F, Finke S, Freuling C,
Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E,
Wilde H and Banyard AC: Rabies. Nat Rev Dis Primers.
3(17091)2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Hameed A: Drug repurposing for rabies
treatment: A computational analysis of 14 agents. ChemRxiv,
2024.
|
33
|
Xu E, Park S, Calderon J, Cao D and Liang
B: In silico identification and in vitro validation of repurposed
compounds targeting the RSV polymerase. Microorganisms.
11(1608)2023.PubMed/NCBI View Article : Google Scholar
|
34
|
Perraud V, Vanderhoydonck B, Bouvier G,
Dias de Melo G, Kilonda A, Koukni M, Jochmans D, Rogée S, Ben
Khalifa Y, Kergoat L, et al: Mechanism of action of phthalazinone
derivatives against rabies virus. Antiviral Res.
224(105838)2024.PubMed/NCBI View Article : Google Scholar
|
35
|
Abdulhameed Odhar H, Hashim AF, Humadi SS
and Ahjel SW: Design and construction of multi epitope-peptide
vaccine candidate for rabies virus. Bioinformation. 19:167–177.
2023.PubMed/NCBI View Article : Google Scholar
|
36
|
Niu Y, Liu Y, Yang L, Qu H, Zhao J, Hu R,
Li J and Liu W: Immunogenicity of multi-epitope-based vaccine
candidates administered with the adjuvant Gp96 against rabies.
Virol Sin. 31:168–175. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Ding Y, Gao Y, Chen R, Zhang Z, Li Q, Jia
T, Zhang T, Xu R, Shi W, Chen L, et al: Development of a novel
multi-epitope oral DNA vaccine for rabies based on a food-borne
microbial vector. Int J Biol Macromol. 255(128085)2024.PubMed/NCBI View Article : Google Scholar
|
38
|
Rizvi SAA, Einstein GP, Tulp OL, Sainvil F
and Branly R: Introduction to traditional medicine and their role
in prevention and treatment of emerging and re-emerging diseases.
Biomolecules. 12(1442)2022.PubMed/NCBI View Article : Google Scholar
|
39
|
Behl T, Rocchetti G, Chadha S, Zengin G,
Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, et al:
Phytochemicals from plant foods as potential source of antiviral
agents: An overview. Pharmaceuticals (Basel).
14(381)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Deressa A, Hussen K, Abebe D and Gera D:
Evaluation of the efficacy of crude extracts of Salix subserrata
and Silene macroselen for the treatment of rabies in Ethiopia.
Ethiop Vet J. 14:1–16. 2011.
|
41
|
Admasu P, Deressa A, Mengistu A, Gebrewold
G and Feyera T: In vivo antirabies activity evaluation of
hydroethanolic extract of roots and leaves of Phytolacca
dodecandra. Glob Vet. 12:12–18. 2014.
|
42
|
Roy S, Samant L, Ganjhu R, Mukherjee S and
Chowdhary A: Assessment of in vivo antiviral potential of Datura
metel Linn. extracts against rabies virus. Pharmacogn Res.
10:109–112. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Maheswari UM, Ebenezer NS and Priyakumari
JC: An In silico approach: Homology modelling and docking studies
of rabies virus glycoprotein with salviifoside a of alangium
salviifolium. Int J Sci Res. 6:531–534. 2017.
|
44
|
Yang YJ, Zhao PS, Zhang T, Wang HL, Liang
HR, Zhao LL, Wu HX, Wang TC, Yang ST and Xia XZ: Small interfering
RNAs targeting the rabies virus nucleoprotein gene. Virus Res.
169:169–174. 2012.PubMed/NCBI View Article : Google Scholar
|
45
|
Trobaugh DW and Klimstra WB: MicroRNA
regulation of RNA virus replication and pathogenesis. Trends Mol
Med. 23:80–93. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Scott TP and Nel LH: Rabies prophylactic
and treatment options: An in vitro study of siRNA- and
aptamer-based therapeutics. Viruses. 13(881)2021.PubMed/NCBI View Article : Google Scholar
|
47
|
Li J, Liu Q, Liu J, Wu X, Lei Y, Li S,
Zhao D, Li Z, Luo L, Peng S, et al: An mRNA-based rabies vaccine
induces strong protective immune responses in mice and dogs. Virol
J. 19(184)2022.PubMed/NCBI View Article : Google Scholar
|
48
|
Stitz L, Vogel A, Schnee M, Voss D, Rauch
S, Mutzke T, Ketterer T, Kramps T and Petsch B: A thermostable
messenger RNA based vaccine against rabies. PLoS Negl Trop Dis.
11(e0006108)2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Bai S, Yang T, Zhu C, Feng M, Zhang L,
Zhang Z, Wang X, Yu R, Pan X, Zhao C, et al: Corrigendum: A single
vaccination of nucleoside-modified rabies mRNA vaccine induces
prolonged highly protective immune responses in mice. Front
Immunol. 14(1146466)2023.PubMed/NCBI View Article : Google Scholar
|
50
|
Aldrich C, Leroux-Roels I, Huang KB, Bica
MA, Loeliger E, Schoenborn-Kellenberger O, Walz L, Leroux-Roels G,
von Sonnenburg F and Oostvogels L: Proof-of-concept of a low-dose
unmodified mRNA-based rabies vaccine formulated with lipid
nanoparticles in human volunteers: A phase 1 trial. Vaccine.
39:1310–1318. 2021.PubMed/NCBI View Article : Google Scholar
|
51
|
Stokes A, Pion J, Binazon O, Laffont B,
Bigras M, Dubois G, Blouin K, Young JK, Ringenberg MA, Ben
Abdeljelil N, et al: Nonclinical safety assessment of repeated
administration and biodistribution of a novel rabies
self-amplifying mRNA vaccine in rats. Regul Toxicol Pharmacol.
113(104648)2020.PubMed/NCBI View Article : Google Scholar
|
52
|
Doener F, Hong HS, Meyer I, Tadjalli-Mehr
K, Daehling A, Heidenreich R, Koch SD, Fotin-Mleczek M and
Gnad-Vogt U: RNA-based adjuvant CV8102 enhances the immunogenicity
of a licensed rabies vaccine in a first-in-human trial. Vaccine.
37:1819–1826. 2019.PubMed/NCBI View Article : Google Scholar
|
53
|
Pharande RR, Majee SB, Gaikwad SS,
Moregoankar SD, Bannalikar AK, Doiphode A, Gandge R, Dighe D, Ingle
S and Mukherjee S: Evolutionary analysis of rabies virus using the
partial nucleoprotein and glycoprotein gene in Mumbai region of
India. J Gen Virol. 102:2021.PubMed/NCBI View Article : Google Scholar
|
54
|
Ashraf HN and Uversky VN: Intrinsic
disorder in the host proteins entrapped in rabies virus particles.
Viruses. 16(916)2024.PubMed/NCBI View Article : Google Scholar
|
55
|
Cai M, Liu H, Jiang F, Sun Y, Wang W, An
Y, Zhang M, Li X, Liu D, Li Y, et al: Analysis of the evolution
infectivity and antigenicity of circulating rabies virus strains.
Emerg Microbes Infect. 11:1474–1484. 2022.PubMed/NCBI View Article : Google Scholar
|
56
|
Quayum ST, Esha NJI, Siraji S, Abbad SSA,
Alsunaidi ZHA, Almatarneh MH, Rahman S, Alodhayb AN, Alibrahim KA,
Kawsar SMA and Uddin KM: Exploring the effectiveness of flavone
derivatives for treating liver diseases: Utilizing DFT, molecular
docking, and molecular dynamics techniques. MethodsX.
12(102537)2024.PubMed/NCBI View Article : Google Scholar
|
57
|
Saha S, Gupta V, Hossain A, Prinsa P,
Ferdous J, Lokhande KB, Jakhmol V and Kawsar Sarkar MA:
Computational Investigation of the Unveils NSD2 Inhibition
Potential of Berberis vulgaris, Sambucus nigra, and Morus alba
through Virtual Screening, Molecular Docking, MD Simulation, and
DFT Analyses, Karbala International J. Modern Sci. 11:129–143.
2025.
|
58
|
M A Kawsar S, Hosen MA, Ahmad S, El Bakri
Y, Laaroussi H, Ben Hadda T, Almalki FA, Ozeki Y and Goumri-Said S:
Potential SARS-CoV-2 RdRp inhibitors of cytidine derivatives:
Molecular docking, molecular dynamic simulations, ADMET, and POM
analyses for the identification of pharmacophore sites. PLoS One.
17(e0273256)2022.PubMed/NCBI View Article : Google Scholar
|
59
|
Saha S, Prinsa and Sarkar MAK:
Natural Flavonoids as Primary Amoebic Meningoencephalitis
Inhibitor: Virtual Screening, Molecular Docking, MD Simulation,
MMPBSA, Density Functional Theory, Principal Component, and Gibbs
Free Energy Landscape Analyses. Chem Biodiv.
22(e202402521)2025.
|
60
|
Karim T, Almatarneh MH, Rahman S, Alodhayb
AN, Albrithen H, Md. Hossain MM, Sarkar M. A. Kawsar, Poirier RA
and Uddin KM: In silico prediction of antibacterial activity of
quinolone derivatives. ChemistrySelect. 9(e202402780)2024.
|
61
|
Sudarshan MK and Ashwath Narayana DH:
Appraisal of surveillance of human rabies and animal bites in seven
states of India. Indian J Public Health. 63 (Supplement):S3–S8.
2019.PubMed/NCBI View Article : Google Scholar
|
62
|
Acharya KP, Acharya N, Phuyal S, Upadhyaya
M and Lasee S: One-health approach: A best possible way to control
rabies. One Health. 10(100161)2020.PubMed/NCBI View Article : Google Scholar
|
63
|
Changalucha J, Steenson R, Grieve E,
Cleaveland S, Lembo T, Lushasi K, Mchau G, Mtema Z, Sambo M, Nanai
A, et al: The need to improve access to rabies post-exposure
vaccines: Lessons from Tanzania. Vaccine. 37 (Suppl 1):A45–A53.
2019.PubMed/NCBI View Article : Google Scholar
|
64
|
Bourhy H, Reynes JM, Dunham EJ, Dacheux L,
Larrous F, Huong VTQ, Xu G, Yan J, Miranda MEG and Holmes EC: The
origin and phylogeography of dog rabies virus. J Gen Virol. 89 (Pt
11):2673–2681. 2008.PubMed/NCBI View Article : Google Scholar
|
65
|
Rupprecht CE, Hanlon CA and Hemachudha T:
Rabies re-examined. Lancet Infect Dis. 2:327–343. 2002.PubMed/NCBI View Article : Google Scholar
|
66
|
Banyard AC, Evans JS, Luo TR and Fooks AR:
Lyssaviruses and bats: Emergence and zoonotic threat. Viruses.
6:2974–2990. 2014.PubMed/NCBI View Article : Google Scholar
|