1
|
Marshall JS, Warrington R, Watson W and
Kim HL: An introduction to immunology and immunopathology. Allergy
Asthma Clin Immunol. 14 (Suppl 2)(S49)2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Page MJ, Kell DB and Pretorius E: The role
of lipopolysaccharide-induced cell signalling in chronic
inflammation. Chronic Stress (Thousand Oaks).
6(24705470221076390)2022.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su
M, Lv H, Li K, Hao X, Xing X and Song S: Application of
lipopolysaccharide in establishing inflammatory models. Int J Biol
Macromol. 279(135371)2024.PubMed/NCBI View Article : Google Scholar
|
4
|
Alanazi FJ, Alruwaili AN, Aldhafeeri NA,
Ballal S, Sharma R, Debnath S, Sinha A, Rekha A, Khan NH, Alrashoud
MM, et al: Pathological interplay of NF-κB and M1 macrophages in
chronic inflammatory lung diseases. Pathol Res Pract.
269(155903)2025.PubMed/NCBI View Article : Google Scholar
|
5
|
Aliyu M, Zohora FT, Anka AU, Ali K,
Maleknia S, Saffarioun M and Azizi G: Interleukin-6 cytokine: An
overview of the immune regulation, immune dysregulation, and
therapeutic approach. Int Immunopharmacol.
111(109130)2022.PubMed/NCBI View Article : Google Scholar
|
6
|
Hirano T: IL-6 in inflammation,
autoimmunity and cancer. Int Immunol. 33:127–148. 2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Šundalić S, Košuta I, Baršić Lapić I, Rako
I, Rogić D, Radonić R and Vujaklija Brajković A: Interleukin-6 and
leukocyte cell population data in newly diagnosed sepsis-a
prospective study. Medicina (Kaunas). 61(468)2025.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhang Z, Zhao Z, Qi C, Zhang X, Xiao Y,
Chen C, Zou Y, Chen X, Gu L, Huang J, et al: Butyrolactone I blocks
the transition of acute kidney injury to chronic kidney disease in
mice by targeting JAK1. MedComm (2020). 6(e70064)2025.PubMed/NCBI View Article : Google Scholar
|
9
|
Rose-John S: Interleukin-6 signalling in
health and disease. F1000Res 9: F1000 Faculty Rev-1013, 2020.
|
10
|
Hu X, Li J, Fu M, Zhao X and Wang W: The
JAK/STAT signaling pathway: From bench to clinic. Signal Transduct
Target Ther. 6(402)2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Kellum JA, Romagnani P, Ashuntantang G,
Ronco C, Zarbock A and Anders HJ: Acute kidney injury. Nat Rev Dis
Primers. 7(52)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Soukup J and Pliquett RU: Acute kidney
injury during sepsis and prognostic role of coexistent chronic
heart failure. J Clin Med. 14(964)2025.PubMed/NCBI View Article : Google Scholar
|
13
|
Baek JH: The impact of versatile
macrophage functions on acute kidney injury and its outcomes. Front
Physiol. 10(1016)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhu XX, Zheng GL, Lu QB, Su JB, Liu Y,
Wang M, Sun QY, Hu JY, Bao N, Xiao PX, et al: Cichoric acid
ameliorates sepsis-induced acute kidney injury by inhibiting M1
macrophage polarization. Eur J Pharmacol.
976(176696)2024.PubMed/NCBI View Article : Google Scholar
|
15
|
Hu X, Zhou W, Wu S, Wang R, Luan Z, Geng
X, Xu N, Zhang Z, Ruan Z, Wang Z, et al: Tacrolimus alleviates
LPS-induced AKI by inhibiting TLR4/MyD88/NF-κB signalling in mice.
J Cell Mol Med. 26:507–514. 2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Privratsky JR, Ide S, Chen Y, Kitai H, Ren
J, Fradin H, Lu X, Souma T and Crowley SD: A macrophage-endothelial
immunoregulatory axis ameliorates septic acute kidney injury.
Kidney Int. 103:514–528. 2023.PubMed/NCBI View Article : Google Scholar
|
17
|
González-Lafuente L, Mercado-García E,
Vázquez-Sánchez S, González-Moreno D, Boscá L, Fernández-Velasco M,
Segura J, Kuro-O M, Ruilope LM, Liaño F and Ruiz-Hurtado G:
Interleukin-6 as a prognostic marker in acute kidney injury and its
klotho-dependent regulation. Nefrologia (Engl Ed). 44:818–829.
2024.PubMed/NCBI View Article : Google Scholar
|
18
|
Ibrahim H, Sharawy MH, Hamed MF and
Abu-Elsaad N: Peficitinib halts acute kidney injury via JAK/STAT3
and growth factors immunomodulation. Eur J Pharmacol.
984(177020)2024.PubMed/NCBI View Article : Google Scholar
|
19
|
Bailly C: Yuanhuacin and related
anti-inflammatory and anticancer daphnane diterpenes from Genkwa
Flos-An overview. Biomolecules. 12(192)2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang S, Li X, Zhang F, Yang P, Gao X and
Song Q: Preparation of yuanhuacine and relative daphne diterpene
esters from Daphne genkwa and structure-activity relationship of
potent inhibitory activity against DNA topoisomerase I. Bioorg Med
Chem. 14:3888–3895. 2006.PubMed/NCBI View Article : Google Scholar
|
21
|
Fermaintt CS, Peramuna T, Cai S,
Takahashi-Ruiz L, Essif JN, Grant CV, O'Keefe BR, Mooberry SL,
Cichewicz RH and Risinger AL: Yuanhuacine is a potent and selective
inhibitor of the basal-like 2 subtype of triple negative breast
cancer with immunogenic potential. Cancers (Basel).
13(2834)2021.PubMed/NCBI View Article : Google Scholar
|
22
|
Kang JI, Hong JY, Lee HJ, Bae SY, Jung C,
Park HJ and Lee SK: Anti-tumor activity of yuanhuacine by
regulating AMPK/mTOR signaling pathway and actin cytoskeleton
organization in non-small cell lung cancer cells. PLoS One.
10(e0144368)2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Baxter EW, Graham AE, Re NA, Carr IM,
Robinson JI, Mackie SL and Morgan AW: Standardized protocols for
differentiation of THP-1 cells to macrophages with distinct
M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J Immunol Methods.
478(112721)2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Park EK, Jung HS, Yang HI, Yoo MC, Kim C
and Kim KS: Optimized THP-1 differentiation is required for the
detection of responses to weak stimuli. Inflamm Res. 56:45–50.
2007.PubMed/NCBI View Article : Google Scholar
|
25
|
Sun X, Wang H, Liu Y, Yang Y, Wang Y, Liu
Y, Ai S, Shan Z and Luo P: 5-methoxytryptophan alleviates
lipopolysaccharide-induced acute kidney injury by regulating
Nrf2-mediated mitophagy. J Inflamm Res. 17:9857–9873.
2024.PubMed/NCBI View Article : Google Scholar
|
26
|
Chen YY, Guo JM, Qian YF, Guo S, Ma CH and
Duan JA: Toxicity of daphnane-type diterpenoids from Genkwa Flos
and their pharmacokinetic profile in rat. Phytomedicine. 21:82–89.
2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Yu JG, Guo J, Zhu KY, Tao W, Chen Y, Liu
P, Hua Y, Tang Y and Duan JA: How impaired efficacy happened
between Gancao and Yuanhua: Compounds, targets and pathways. Sci
Rep. 7(3828)2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Lee SH, Kim KH, Lee SM, Park SJ, Lee S,
Cha RH, Lee JW, Kim DK, Kim YS, Ye SK and Yang SH: STAT3 blockade
ameliorates LPS-induced kidney injury through macrophage-driven
inflammation. Cell Commun Signal. 22(476)2024.PubMed/NCBI View Article : Google Scholar
|
29
|
Ban KY, Nam GY, Kim D, Oh YS and Jun HS:
Prevention of LPS-induced acute kidney injury in mice by bavachin
and its potential mechanisms. Antioxidants (Basel).
11(2096)2022.PubMed/NCBI View Article : Google Scholar
|
30
|
Kellum JA and Lameire N: KDIGO AKI
Guideline Work Group. Diagnosis, evaluation, and management of
acute kidney injury: A KDIGO summary (Part 1). Crit Care.
17(204)2013.PubMed/NCBI View
Article : Google Scholar
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
32
|
Gupta KK, Donahue DL, Sandoval-Cooper MJ,
Castellino FJ and Ploplis VA: Abrogation of plasminogen activator
inhibitor-1-vitronectin interaction ameliorates acute kidney injury
in murine endotoxemia. PLoS One. 10(e0120728)2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Chen H, Liu N and Zhuang S: Macrophages in
renal injury, repair, fibrosis following acute kidney injury and
targeted therapy. Front Immunol. 13(934299)2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Wang W, Zhou PH, Hu W, Xu CG, Zhou XJ,
Liang CZ and Zhang J: Cryptotanshinone hinders renal fibrosis and
epithelial transdifferentiation in obstructive nephropathy by
inhibiting TGF-β1/Smad3/integrin β1 signal. Oncotarget.
9:26625–26637. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Yousef Almulhim M: The efficacy of novel
biomarkers for the early detection and management of acute kidney
injury: A systematic review. PLoS One. 20(e0311755)2025.PubMed/NCBI View Article : Google Scholar
|
36
|
Balci Ç, Özcan MS, Aşci H, Karabacak P,
Kuruşçu O, Taner R, Özmen Ö, Tepebaşi MY, İlhan İ and Çömlekçi S:
Radiofrequency electromagnetic and pulsed magnetic fields protected
the kidney against lipopolysaccharide-induced acute systemic
inflammation, oxidative stress, and apoptosis by regulating the
IL-6/HIF1α/eNOS and Bcl2/Bax/Cas-9 pathways. Medicina (Kaunas).
61(238)2025.PubMed/NCBI View Article : Google Scholar
|
37
|
Fullerton JN and Gilroy DW: Resolution of
inflammation: A new therapeutic frontier. Nat Rev Drug Discov.
15:551–567. 2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Sobah ML, Liongue C and Ward AC: SOCS
proteins in immunity, inflammatory diseases, and immune-related
cancer. Front Med (Lausanne). 8(727987)2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Schust J, Sperl B, Hollis A, Mayer TU and
Berg T: Stattic: A small-molecule inhibitor of STAT3 activation and
dimerization. Chem Biol. 13:1235–1242. 2006.PubMed/NCBI View Article : Google Scholar
|
40
|
Liu X, Chen J and Liu L: DUSP2 inhibits
the progression of lupus nephritis in mice by regulating the STAT3
pathway. Open Life Sci. 18(20220649)2023.PubMed/NCBI View Article : Google Scholar
|
41
|
Chen S, Zhang J, Sun D, Wu Y, Fang J, Wan
X, Li S, Zhang S, Gu Q, Shao Q, et al: SYVN1 promotes STAT3 protein
ubiquitination and exerts antiangiogenesis effects in retinopathy
of prematurity development. Invest Ophthalmol Vis Sci.
64(8)2023.PubMed/NCBI View Article : Google Scholar
|