
Histone deacetylase 6: A new player in oxidative stress‑associated disorders and cancers (Review)
- Authors:
- Fei Qu
- Qingqing Zhao
- Yi Jin
-
Affiliations: Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China, Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China - Published online on: July 4, 2025 https://doi.org/10.3892/ijmm.2025.5578
- Article Number: 137
-
Copyright: © Qu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Forman HJ and Zhang H: Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 20:689–709. 2021. View Article : Google Scholar : PubMed/NCBI | |
Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM and Teleanu RI: An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 23:59382022. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J and Gao F: Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol. 63:1027542023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang G, Dasgupta S, Niewold EL, Li C, Li Q, Luo X, Tan L, Ferdous A, Lorenzi PL, et al: ATF4 protects the heart from failure by antagonizing oxidative stress. Circ Res. 131:91–105. 2022. View Article : Google Scholar : PubMed/NCBI | |
Masenga SK, Kabwe LS, Chakulya M and Kirabo A: Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci. 24:78982023. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Zhou H, Wei J, Mo W, Li Q and Lv X: The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biol. 58:1025532022. View Article : Google Scholar : PubMed/NCBI | |
Guan D, Men Y, Bartlett A, Hernández MAS, Xu J, Yi X, Li HS, Kong D, Mazitschek R and Ozcan U: Central inhibition of HDAC6 re-sensitizes leptin signaling during obesity to induce profound weight loss. Cell Metab. 36:857–876.e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Hwang HG, Lee JY, Kim M and Kim JY: Cortactin deacetylation by HDAC6 and SIRT2 regulates neuronal migration and dendrite morphogenesis during cerebral cortex development. Mol Brain. 13:1052020. View Article : Google Scholar : PubMed/NCBI | |
Wu TY, Chen M, Chen IC, Chen YJ, Chen CY, Wang CH, Cheng JJ, Nepali K, Chuang KH and Liou JP: Rational design of synthetically tractable HDAC6/HSP90 dual inhibitors to destroy immune-suppressive tumor microenvironment. J Adv Res. 46:159–171. 2023. View Article : Google Scholar : | |
Zhang S, Sui L, Kong X, Huang R and Li Z: HDAC6 decreases H4K16 and α-tubulin acetylation during porcine oocyte maturation. Cell Cycle. 22:2057–2069. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liang T, Qi C, Lai Y, Xie J, Wang H, Zhang L, Lin T, Jv M, Li J, Wang Y, et al: HDAC6-mediated α-tubulin deacetylation suppresses autophagy and enhances motility of podocytes in diabetic nephropathy. J Cell Mol Med. 24:11558–11572. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luthold C, Varlet AA, Lambert H, Bordeleau F and Lavoie JN: Chaperone-assisted mitotic actin remodeling by BAG3 and HSPB8 involves the deacetylase HDAC6 and its substrate cortactin. Int J Mol Sci. 22:1422020. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Yang X, Li Z, Le W, Hao Y, Song Y, Wang F and Guan Y: HDAC6-mediated Hsp90 deacetylation reduces aggregation and toxicity of the protein alpha-synuclein by regulating chaperone-mediated autophagy. Neurochem Int. 149:1051412021. View Article : Google Scholar : PubMed/NCBI | |
Bai P, Mondal P, Bagdasarian FA, Rani N, Liu Y, Gomm A, Tocci DR, Choi SH, Wey HY, Tanzi RE, et al: Development of a potential PET probe for HDAC6 imaging in Alzheimer's disease. Acta Pharm Sin B. 12:3891–3904. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M and Huang F: HDAC6 deficiency has moderate effects on behaviors and Parkinson's disease pathology in mice. Int J Mol Sci. 24:99752023. View Article : Google Scholar : PubMed/NCBI | |
Ducellier S, Demeules M, Letribot B, Gaetani M, Michaudel C, Sokol H, Hamze A, Alami M, Nascimento M and Apcher S: Dual molecule targeting HDAC6 leads to intratumoral CD4+ cytotoxic lymphocytes recruitment through MHC-II upregulation on lung cancer cells. J Immunother Cancer. 12:e0075882024. View Article : Google Scholar : PubMed/NCBI | |
Ranjbarvaziri S, Zeng A, Wu I, Greer-Short A, Farshidfar F, Budan A, Xu E, Shenwai R, Kozubov M, Li C, et al: Targeting HDAC6 to treat heart failure with preserved ejection fraction in mice. Nat Commun. 15:13522024. View Article : Google Scholar : PubMed/NCBI | |
Wu YX, Li BQ, Yu XQ, Liu YL, Chui RH, Sun K, Geng DG and Ma LY: Histone deacetylase 6 as a novel promising target to treat cardiovascular disease. Cancer Innov. 3:e1142024. View Article : Google Scholar | |
Kundu S, Gairola S, Verma S, Mugale MN and Sahu BD: Chronic kidney disease activates the HDAC6-inflammatory axis in the heart and contributes to myocardial remodeling in mice: Inhibition of HDAC6 alleviates chronic kidney disease-induced myocardial remodeling. Basic Res Cardiol. 119:831–852. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Pan Y, Wang L, Liu M, Tu P, Chen S, Shi L, Yan D, Ma Y and Guo Y: Inhibition of HDAC6 promotes microvascular endothelial cells to phagocytize myelin debris and reduces inflammatory response to accelerate the repair of spinal cord injury. CNS Neurosci Ther. 30:e144392024. View Article : Google Scholar : | |
Wen Y, Ye S, Li Z, Zhang X, Liu C, Wu Y, Zheng R, Xu C, Tian J, Shu L, et al: HDAC6 inhibitor ACY-1215 enhances STAT1 acetylation to block PD-L1 for colorectal cancer immunotherapy. Cancer Immunol Immunother. 73:72024. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Feng M, Wang B, Zheng Y, Jiang D, Zhao L, Mamun MAA, Kang H, Nie H, Zhang X, et al: New insights into the non-enzymatic function of HDAC6. Biomed Pharmacother. 161:1144382023. View Article : Google Scholar : PubMed/NCBI | |
Kaur S, Rajoria P and Chopra M: HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr). 45:779–829. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Liu Y, Yin H, Xie S, Zhang L, Dong X, Ni H, Bu W, Ma H, Liu P, et al: HDAC6 deacetylates IDH1 to promote the homeostasis of hematopoietic stem and progenitor cells. EMBO Rep. 24:e560092023. View Article : Google Scholar | |
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J and Wu J: Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem. 138:1066222023. View Article : Google Scholar : PubMed/NCBI | |
Izumi H, Kaneko Y and Nakagawara A: Molecular regulation of autophagy and asymmetric cell division by cancer stem cell marker CD133. Cells. 12:8192023. View Article : Google Scholar : PubMed/NCBI | |
Balmik AA, Sonawane SK and Chinnathambi S: The extracellular HDAC6 ZnF UBP domain modulates the actin network and post-translational modifications of Tau. Cell Commun Signal. 19:492021. View Article : Google Scholar : PubMed/NCBI | |
Calogero AM, Basellini MJ, Isilgan HB, Longhena F, Bellucci A, Mazzetti S, Rolando C, Pezzoli G and Cappelletti G: Acetylated α-tubulin and α-synuclein: physiological interplay and contribution to α-synuclein oligomerization. Int J Mol Sci. 24:122872023. View Article : Google Scholar | |
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, et al: Selective and bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole substrate inhibitors and modeling of their bioactivation mechanism. J Med Chem. 66:14188–14207. 2023. View Article : Google Scholar : PubMed/NCBI | |
Si L, Lai T, Zhao J, Jin Y, Qi M, Li M, Fu H, Shi X, Ma L and Guo R: Identification of a novel pyridine derivative with inhibitory activity against ovarian cancer progression in vivo and in vitro. Front Pharmacol. 13:10644852022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang X and Huang A: Aggresome-autophagy associated gene HDAC6 is a potential biomarker in pan-cancer, especially in colon adenocarcinoma. Front Oncol. 11:7185892021. View Article : Google Scholar : PubMed/NCBI | |
Lemos M and Stefanova N: Histone deacetylase 6 and the disease mechanisms of α-synucleinopathies. Front Synaptic Neurosci. 12:5864532020. View Article : Google Scholar | |
Dawood M, Hegazy MF, Elbadawi M, Fleischer E, Klinger A, Bringmann G, Kuntner C, Shan L and Efferth T: Vitamin K3 chloro derivative (VKT-2) inhibits HDAC6, activates autophagy and apoptosis, and inhibits aggresome formation in hepatocellular carcinoma cells. Biochem Pharmacol. 180:1141762020. View Article : Google Scholar | |
English K and Barton MC: HDAC6: A key link between mitochondria and development of peripheral neuropathy. Front Mol Neurosci. 14:6847142021. View Article : Google Scholar : PubMed/NCBI | |
Xia K, Qiu T, Jian Y, Liu H, Chen H, Liu X, Chen Z and Wang L: Degradation of histone deacetylase 6 alleviates ROS-mediated apoptosis in renal ischemia-reperfusion injury. Biomed Pharmacother. 165:1151282023. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Jangili P, Kim J, Lucia SE, Ryu JR, Prasad R, Zi S, Kim P, Sun W and Kim JS: Mitochondrial NIR imaging probe mitigating oxidative damage by targeting HDAC6. Chem Commun (Camb). 59:10109–10112. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Gan B and Zhou Y, Wang T, Zhu T, Peng X, Zhang X and Zhou Y: Advances in the mechanistic study of the control of oxidative stress injury by modulating HDAC6 activity. Cell Biochem Biophys. 81:127–139. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bonanni D, Citarella A, Moi D, Pinzi L, Bergamini E and Rastelli G: Dual Targeting strategies on histone deacetylase 6 (HDAC6) and heat shock protein 90 (Hsp90). Curr Med Chem. 29:1474–1502. 2022. View Article : Google Scholar | |
Ryu HW, Won HR, Lee DH and Kwon SH: HDAC6 regulates sensitivity to cell death in response to stress and post-stress recovery. Cell Stress Chaperones. 22:253–261. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barter MJ, Butcher A, Wang H, Tsompani D, Galler M, Rumsby EL, Culley KL, Clark IM and Young DA: HDAC6 regulates NF-κB signalling to control chondrocyte IL-1-induced MMP and inflammatory gene expression. Sci Rep. 12:66402022. View Article : Google Scholar | |
Zhang WB, Yang F, Wang Y, Jiao FZ, Zhang HY, Wang LW and Gong ZJ: Inhibition of HDAC6 attenuates LPS-induced inflammation in macrophages by regulating oxidative stress and suppressing the TLR4-MAPK/NF-κB pathways. Biomed Pharmacother. 117:1091662019. View Article : Google Scholar | |
Xu S, Chen H, Ni H and Dai Q: Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-κB/NLRP3 pathway. Atherosclerosis. 317:1–9. 2021. View Article : Google Scholar | |
Zhang J, Liu M, Liu W and Wang W: Ras-ERK1/2 signalling promotes the development of osteosarcoma through regulation of H4K12ac through HAT1. Artif Cells Nanomed Biotechnol. 47:1207–1215. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Xia Y, Hu K, Zeng S, Wu L, Liu S, Zhi C, Lai M, Chen D, Xie L and Yuan Z: Histone deacetylase 6 promotes growth of glioblastoma through the MKK7/JNK/c-Jun signaling pathway. J Neurochem. 152:221–234. 2020. View Article : Google Scholar | |
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H and Yin Q: Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther. 8:2182023. View Article : Google Scholar : PubMed/NCBI | |
Ou Y, Shen C, Chen Z, Liu T, Peng Y, Zong D and Ouyang R: TDP43/HDAC6/Prdx1 signaling pathway participated in the cognitive impairment of obstructive sleep apnea via regulating inflammation and oxidative stress. Int Immunopharmacol. 127:1113502024. View Article : Google Scholar | |
Tolosa E, Garrido A, Scholz SW and Poewe W: Challenges in the diagnosis of Parkinson's disease. Lancet Neurol. 20:385–397. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, et al: Parkin and PINK1 mitigate STING-induced inflammation. Nature. 561:258–262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Wei X, Jian W, Qin Y, Liu J, Zhu S, Jiang F, Lou H and Zhang B: Pharmacological inhibition of HDAC6 attenuates NLRP3 inflammatory response and protects dopaminergic neurons in experimental models of Parkinson's disease. Front Aging Neurosci. 12:782020. View Article : Google Scholar : PubMed/NCBI | |
Peng C, Wang Y, Hu Z and Chen C: Selective HDAC6 inhibition protects against blood-brain barrier dysfunction after intracerebral hemorrhage. CNS Neurosci Ther. 30:e144292024. View Article : Google Scholar | |
Wang M, Zhou C, Yu L, Kong D, Ma W, Lv B, Wang Y, Wu W, Zhou M and Cui G: Upregulation of MDH1 acetylation by HDAC6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage. Cell Mol Life Sci. 79:3562022. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Benito M, Granado N, Garcia-Sanz P, Michel A, Dumoulin M and Moratalla R: Modeling Parkinson's disease with the alpha-synuclein protein. Front Pharmacol. 11:3562020. View Article : Google Scholar : PubMed/NCBI | |
Masini D, Plewnia C, Bertho M, Scalbert N, Caggiano V and Fisone G: A guide to the generation of a 6-hydroxydopamine mouse model of Parkinson's disease for the study of non-motor symptoms. Biomedicines. 9:5982021. View Article : Google Scholar : PubMed/NCBI | |
Bobrowska A, Paganetti P, Matthias P and Bates GP: Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS One. 6:e206962011. View Article : Google Scholar : PubMed/NCBI | |
Mazzetti S, De Leonardis M, Gagliardi G, Calogero AM, Basellini MJ, Madaschi L, Costa I, Cacciatore F, Spinello S, Bramerio M, et al: Phospho-HDAC6 gathers into protein aggregates in Parkinson's disease and atypical parkinsonisms. Front Neurosci. 14:6242020. View Article : Google Scholar : PubMed/NCBI | |
D'Sa K, Evans JR, Virdi GS, Vecchi G, Adam A, Bertolli O, Fleming J, Chang H, Leighton C, Horrocks MH, et al: Prediction of mechanistic subtypes of Parkinson's using patient-derived stem cell models. Nat Mach Intell. 5:933–946. 2023. View Article : Google Scholar : PubMed/NCBI | |
Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, Simuni T, Jennings D, Tanner CM, Trojanowski JQ, et al: The Parkinson's progression markers initiative (PPMI)-establishing a PD biomarker cohort. Ann Clin Transl Neurol. 5:1460–1477. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng T, Liu C, Wang Y, Li G, Feng L, Zhang S, Qi B, Cui J, Guo L, Cao L, et al: A novel histone deacetylase inhibitor Se-SAHA attenuates isoproterenol-induced heart failure via antioxidative stress and autophagy inhibition. Toxicol Appl Pharmacol. 487:1169572024. View Article : Google Scholar : PubMed/NCBI | |
Ruopp NF and Cockrill BA: Diagnosis and treatment of pulmonary arterial hypertension: A review. JAMA. 327:1379–1391. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty P, Po SS, Scherlag BJ and Dasari TW: The neurometabolic axis: A novel therapeutic target in heart failure. Life Sci. 333:1221222023. View Article : Google Scholar : PubMed/NCBI | |
Brandt M, Dörschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S, et al: Telomere shortening in hypertensive heart disease depends on oxidative DNA damage and predicts impaired recovery of cardiac function in heart failure. Hypertension. 79:2173–2184. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Liu J, Hu Y, Zhang X, Cao L, Dong Z, Li L and Hu Z: Bacterial diversity in the intestinal mucosa of heart failure rats treated with Sini Decoction. BMC Complement Med Ther. 22:932022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Chang J, Wang Y and Pan G: Indole-3-propionic acid, a product of intestinal flora, inhibits the HDAC6/NOX2 signalling and relieves doxorubicin-induced cardiomyocyte damage. Folia Morphol (Warsz). 83:382–390. 2024. | |
De Becker B and Van De Borne P: Serum uric acid: A futile bystander in endothelial function? Blood Press. 32:22371232023. View Article : Google Scholar : PubMed/NCBI | |
Yu W and Cheng JD: Uric acid and cardiovascular disease: An update from molecular mechanism to clinical perspective. Front Pharmacol. 11:5826802020. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang Y, Zhou M, Du Y, Li P, Guan C and Huang Z: HDAC inhibitors alleviate uric acid-induced vascular endothelial cell injury by way of the HDAC6/FGF21/PI3K/AKT pathway. J Cardiovasc Pharmacol. 81:150–164. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guymer RH and Campbell TG: Age-related macular degeneration. Lancet. 401:1459–1472. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, Wong WT and Chew EY: Age-related macular degeneration. Nat Rev Dis Primers. 7:312021. View Article : Google Scholar : PubMed/NCBI | |
Fleckenstein M, Schmitz-Valckenberg S and Chakravarthy U: Age-related macular degeneration: A review. JAMA. 331:147–157. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sundaramurthi H, Roche SL, Grice GL, Moran A, Dillion ET, Campiani G, Nathan JA and Kennedy BN: Selective histone deacetylase 6 inhibitors restore cone photoreceptor vision or outer segment morphology in zebrafish and mouse models of retinal blindness. Front Cell Dev Biol. 8:6892020. View Article : Google Scholar : PubMed/NCBI | |
Abouhish H, Thounaojam MC, Jadeja RN, Gutsaeva DR, Powell FL, Khriza M, Martin PM and Bartoli M: Inhibition of HDAC6 attenuates diabetes-induced retinal redox imbalance and microangiopathy. Antioxidants (Basel). 9. pp. 5992020, View Article : Google Scholar | |
Yang Q, Li S, Zhou Z, Fu M, Yang X, Hao K and Liu Y: HDAC6 inhibitor Cay10603 inhibits high glucose-induced oxidative stress, inflammation and apoptosis in retinal pigment epithelial cells via regulating NF-κB and NLRP3 inflammasome pathway. Gen Physiol Biophys. 39:169–177. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hou Q, Kan S, Wang Z, Shi J, Zeng C, Yang D, Jiang S and Liu Z: Inhibition of HDAC6 with CAY10603 ameliorates diabetic kidney disease by suppressing NLRP3 inflammasome. Front Pharmacol. 13:9383912022. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Wu R, Wang F, Li S, Li L, Li Y, Qin P, Wei M, Yang J, Wu J, et al: Liberation of daidzein by gut microbial β-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice. Cell Host Microbe. 31:766–780.e7. 2023. View Article : Google Scholar | |
Chen S, Lu Z, Jia H, Yang B, Liu C, Yang Y, Zhang S, Wang Z, Yang L, Li S, et al: Hepatocyte-specific Mas activation enhances lipophagy and fatty acid oxidation to protect against acetaminophen-induced hepatotoxicity in mice. J Hepatol. 78:543–557. 2023. View Article : Google Scholar | |
Jaeschke H and Ramachandran A: Acetaminophen hepatotoxicity: Paradigm for understanding mechanisms of drug-induced liver injury. Annu Rev Pathol. 19:453–478. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang GD, Wang LL, Zheng L, Wang SQ, Yang RQ, He YT, Wang JW, Zhao MY, Ding Y, Liu M, et al: A novel HDAC6 inhibitor attenuate APAP-induced liver injury by regulating MDH1-mediated oxidative stress. Int Immunopharmacol. 131:1118612024. View Article : Google Scholar : PubMed/NCBI | |
Cecconi M, Evans L, Levy M and Rhodes A: Sepsis and septic shock. Lancet. 392:75–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, Li L, Cao J, Xu F, Zhou Y, et al: Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil Med Res. 9:562022.PubMed/NCBI | |
Vincent JL: Current sepsis therapeutics. EBioMedicine. 86:1043182022. View Article : Google Scholar : PubMed/NCBI | |
Guo SD, Yan ST, Li W, Zhou H, Yang JP, Yao Y, Shen MJ, Zhang LW, Zhang HB and Sun LC: HDAC6 promotes sepsis development by impairing PHB1-mediated mitochondrial respiratory chain function. Aging (Albany NY). 12:5411–5422. 2020. View Article : Google Scholar : PubMed/NCBI | |
Capuzzimati M, Hough O and Liu M: Cell death and ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant. 41:1003–1013. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang YH, Yan ZZ, Luo SD, Hu JJ, Wu M, Zhao J, Liu WF, Li C and Liu KX: Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice. Eur Respir J. 61:22008402023. View Article : Google Scholar | |
Zhou H, Wu R and Li H: Downregulation of HDAC6 mitigates lung ischemia/reperfusion injury depending on activation of Nrf2/HO-1 signaling pathway and inactivation of ERK/NF-κB signaling pathway. Tissue Cell. 89:1024462024. View Article : Google Scholar | |
Abramoff B and Caldera FE: Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 104:293–311. 2020. View Article : Google Scholar : PubMed/NCBI | |
Favero M, Belluzzi E, Ortolan A, Lorenzin M, Oliviero F, Doria A, Scanzello CR and Ramonda R: Erosive hand osteoarthritis: Latest findings and outlook. Nat Rev Rheumatol. 18:171–183. 2022. View Article : Google Scholar : PubMed/NCBI | |
Knights AJ, Redding SJ and Maerz T: Inflammation in osteoarthritis: The latest progress and ongoing challenges. Curr Opin Rheumatol. 35:128–134. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Ji K, Cai Z, Huang C, He X, Xu H and Chen G: Inhibition of HDAC6 by Tubastatin A reduces chondrocyte oxidative stress in chondrocytes and ameliorates mouse osteoarthritis by activating autophagy. Aging (Albany NY). 13:9820–9837. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cope PJ, Ourradi K, Li Y and Sharif M: Models of osteoarthritis: The good, the bad and the promising. Osteoarthritis Cartilage. 27:230–239. 2019. View Article : Google Scholar : | |
Malfait AM and Little CB: On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther. 17:2252015. View Article : Google Scholar : PubMed/NCBI | |
Teng M, Zhao X, Wang C, Wang C, White JC, Zhao W, Zhou L, Duan M and Wu F: Polystyrene nanoplastics toxicity to zebrafish: Dysregulation of the brain-intestine-microbiota axis. ACS Nano. 16:8190–8204. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shan S, Zhang Y, Zhao H, Zeng T and Zhao X: Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere. 298:1342612022. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Liang B, Huang Y, Li Z, Zhang B, Du J, Ye R, Xian H, Deng Y, Xiu J, et al: Long-chain Acyl carnitines aggravate polystyrene nanoplastics-induced atherosclerosis by upregulating MARCO. Adv Sci (Weinh). 10:e22058762023. View Article : Google Scholar : PubMed/NCBI | |
Qiu W, Ye J, Su Y, Zhang X, Pang X, Liao J, Wang R, Zhao C, Zhang H, Hu L, et al: Co-exposure to environmentally relevant concentrations of cadmium and polystyrene nanoplastics induced oxidative stress, ferroptosis and excessive mitophagy in mice kidney. Environ Pollut. 333:1219472023. View Article : Google Scholar : PubMed/NCBI | |
Han SW and Ryu KY: Increased clearance of non-biodegradable polystyrene nanoplastics by exocytosis through inhibition of retrograde intracellular transport. J Hazard Mater. 439:1295762022. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Wang X, Zhang S, Deng P, Jiang Y, Liang Y, Jie S, Wang Q, Li C, Tian G, et al: NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduct Target Ther. 7:1302022. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa K, Fujii S, Matsumoto S, Tajiri Y, Kikuchi A and Kiyoshima T: YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation. J Pathol. 253:80–93. 2021. View Article : Google Scholar | |
Bayik D and Lathia JD: Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 21:526–536. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jin G, Wang K, Zhao Y, Yuan S, He Z and Zhang J: Targeting histone deacetylases for heart diseases. Bioorg Chem. 138:1066012023. View Article : Google Scholar : PubMed/NCBI | |
Tavares MO, Milan TM, Bighetti-Trevisan RL, Leopoldino AM and de Almeida LO: Pharmacological inhibition of HDAC6 overcomes cisplatin chemoresistance by targeting cancer stem cells in oral squamous cell carcinoma. J Oral Pathol Med. 51:529–537. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol. 97:2499–2574. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nagai H, Tatara H, Tanaka-Furuhashi K, Kurata S and Yano T: Homeostatic regulation of ROS-triggered Hippo-Yki pathway via autophagic clearance of Ref(2)P/p62 in the Drosophila intestine. Dev Cell. 56:81–94.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ando T, Arang N, Wang Z, Costea DE, Feng X, Goto Y, Izumi H, Gilardi M, Ando K and Gutkind JS: EGFR regulates the Hippo pathway by promoting the tyrosine phosphorylation of MOB1. Commun Biol. 4:12372021. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Zhang L, Li X, Xu W, Yang S, Song J, Zhang W, Zhan J, Luo J and Zhang H: Oxidative stress-CBP axis modulates MOB1 acetylation and activates the Hippo signaling pathway. Nucleic Acids Res. 50:3817–3834. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cai R, Zhu H, Liu Y, Sha H, Peng W, Yin R, Zhou G and Fang Y: To be, or not to be: the dilemma of immunotherapy for non-small cell lung cancer harboring various driver mutations. J Cancer Res Clin Oncol. 149:10027–10040. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bourouh M and Marignani PA: The tumor suppressor kinase LKB1: Metabolic nexus. Front Cell Dev Biol. 10:8812972022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Nabel CS, Li D, O'Connor RÍ, Crosby CR, Chang SM, Hao Y, Stanley R, Sahu S, Levin DS, et al: Histone deacetylase 6 inhibition exploits selective metabolic vulnerabilities in LKB1 mutant, KRAS driven NSCLC. J Thorac Oncol. 18:882–895. 2023. View Article : Google Scholar : PubMed/NCBI | |
Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wißmann N, Botz M, Soyka SJ, Beretta CA, Pramatarov RL, et al: Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 185:2899–2917.e31. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sharma R, Chiang YH, Chen HC, Lin HY, Yang WB, Nepali K, Lai MJ, Chen KY, Liou JP and Hsu TI: Dual inhibition of CYP17A1 and HDAC6 by abiraterone-installed hydroxamic acid overcomes temozolomide resistance in glioblastoma through inducing DNA damage and oxidative stress. Cancer Lett. 586:2166662024. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Qu X, Liu B, Zhao Y, Xu L, Yu S, Wang J, Wang L and Su J: Autophagy-induced HDAC6 activity during hypoxia regulates mitochondrial energy metabolism through the β-catenin/COUP-TFII axis in hepatocellular carcinoma cells. Front Oncol. 11:7424602021. View Article : Google Scholar | |
Zeleke TZ, Pan Q, Chiuzan C, Onishi M, Li Y, Tan H, Alvarez MJ, Honan E, Yang M, Chia PL, et al: Network-based assessment of HDAC6 activity predicts preclinical and clinical responses to the HDAC6 inhibitor ricolinostat in breast cancer. Nat Cancer. 4:257–275. 2023. View Article : Google Scholar | |
Xu G, Niu L, Wang Y, Yang G, Zhu X, Yao Y, Zhao G, Wang S and Li H: HDAC6-dependent deacetylation of TAK1 enhances sIL-6R release to promote macrophage M2 polarization in colon cancer. Cell Death Dis. 13:8882022. View Article : Google Scholar : PubMed/NCBI | |
Mardones C, Navarrete-Munoz C, Armijo ME, Salgado K, Rivas-Valdes F, Gonzalez-Pecchi V, Farkas C, Villagra A and Hepp MI: Role of HDAC6-STAT3 in immunomodulatory pathways in colorectal cancer cells. Mol Immunol. 164:98–111. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang D and Ma P: Canagliflozin, characterized as a HDAC6 inhibitor, inhibits gastric cancer metastasis. Front Oncol. 12:10574552022. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y and Yang X, Wang C, Zhang S, Wang Z, Li M, Wang Y, Wang X and Yang X: HDAC6, modulated by miR-206, promotes endometrial cancer progression through the PTEN/AKT/mTOR pathway. Sci Rep. 10:35762020. View Article : Google Scholar : PubMed/NCBI | |
Dai HY, Chang LS, Yang SF, Wang SN, Su SJ and Yeh YT: HDAC6 promotes aggressive development of liver cancer by improving egfr mRNA stability. Neoplasia. 35:1008452023. View Article : Google Scholar | |
Guadagni A, Barone S, Alfano AI, Pelliccia S, Bello I, Panza E, Summa V and Brindisi M: Tackling triple negative breast cancer with HDAC inhibitors: 6 is the isoform! Eur J Med Chem. 279:1168842024. View Article : Google Scholar : PubMed/NCBI | |
Zhang SL, Zhu HY, Zhou BY, Chu Y, Huo JR, Tan YY and Liu DL: Histone deacetylase 6 is overexpressed and promotes tumor growth of colon cancer through regulation of the MAPK/ERK signal pathway. Onco Targets Ther. 12:2409–2419. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Liu D and Tan Y: Role of HDAC6 and its selective inhibitors in gastrointestinal cancer. Front Cell Dev Biol. 9:7193902021. View Article : Google Scholar : PubMed/NCBI | |
Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF and Yao TP: HDAC6 is a microtubule-associated deacetylase. Nature. 417:455–458. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kovacs JJ, Murphy PJM, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB and Yao TP: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 18:601–607. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR, et al: HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell. 27:197–213. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yoo J, Jeon YH, Lee DH, Kim GW, Lee SW, Kim SY, Park J and Kwon SH: HDAC6-selective inhibitors enhance anticancer effects of paclitaxel in ovarian cancer cells. Oncol Lett. 21:2012021. View Article : Google Scholar : PubMed/NCBI | |
Bridgewater JA, Beer P, Bendall J, Dehbi HM, Duggan M, Hung M, King J, McElwaine-Johnn H and White L: A phase II study of selective HDAC6 inhibition with KA2507 for second-line treatment of advanced biliary tract cancer (ABC-11). J Clin Oncol. 38(15 Suppl): TPS46522020. View Article : Google Scholar | |
Park SJ, Joo SH, Lee N, Jang WJ, Seo JH and Jeong CH: ACY-241, an HDAC6 inhibitor, overcomes erlotinib resistance in human pancreatic cancer cells by inducing autophagy. Arch Pharm Res. 44:1062–1075. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Zhu F, Zhu S and Bai L: HDAC6 suppresses microRNA-199a transcription and augments HPV-positive cervical cancer progression through Wnt5a upregulation. Int J Biochem Cell Biol. 136:1060002021. View Article : Google Scholar : PubMed/NCBI | |
Zuo Q, Wu W, Li X, Zhao L and Chen W: HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin. Oncol Rep. 27:819–824. 2012. | |
Ruan Y, Wang L and Lu Y: HDAC6 inhibitor, ACY1215 suppress the proliferation and induce apoptosis of gallbladder cancer cells and increased the chemotherapy effect of gemcitabine and oxaliplatin. Drug Dev Res. 82:598–604. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Sun Y, Wang H, Li H, Zhang M, Zhou L, Meng X, Wu Y, Liu P, Liu X, et al: MicroRNA-221 induces autophagy through suppressing HDAC6 expression and promoting apoptosis in pancreatic cancer. Oncol Lett. 16:7295–7301. 2018.PubMed/NCBI | |
Kim JY, Han SY, Yoo J, Kim GW, Jeon YH, Lee SW, Park J and Kwon SH: HDAC8-selective inhibition by PCI-34051 enhances the anticancer effects of ACY-241 in ovarian cancer cells. Int J Mol Sci. 23:86452022. View Article : Google Scholar : PubMed/NCBI | |
Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, et al: Discovery of HDAC6-selective inhibitor NN-390 with in vitro efficacy in group 3 medulloblastoma. J Med Chem. 65:3193–3217. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Wu W, Tang X, Zhang F, Ju C, Liu R, Liang Y, Yu B, Lv B, Guo Y, et al: HDAC6 inhibitor WT161 performs anti-tumor effect on osteosarcoma and synergistically interacts with 5-FU. Biosci Rep. 41:BSR202039052021. View Article : Google Scholar : PubMed/NCBI | |
Garcha HK, Nawar N, Sorger H, Erdogan F, Aung MMK, Sedighi A, Manaswiyoungkul P, Seo HS, Schönefeldt S, Pölöske D, et al: High efficacy and drug synergy of HDAC6-selective inhibitor NN-429 in natural killer (NK)/T-cell lymphoma. Pharmaceuticals (Basel). 15. pp. 13212022, View Article : Google Scholar | |
Zhang J, Chen X, Chen G, Wang H, Jia L, Hao Y and Yao D: Identification of a novel PAK1/HDAC6 dual inhibitor ZMF-23 that triggers tubulin-stathmin regulated cell death in triple negative breast cancer. Int J Biol Macromol. 251:1263482023. View Article : Google Scholar : PubMed/NCBI | |
Reddy RG, Surineni G, Bhattacharya D, Marvadi SK, Sagar A, Kalle AM, Kumar A, Kantevari S and Chakravarty S: Crafting carbazole-based Vorinostat and tubastatin-A-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega. 4:17279–17294. 2019. View Article : Google Scholar : PubMed/NCBI | |
Leyk J, Daly C, Janssen-Bienhold U, Kennedy BN and Richter-Landsberg C: HDAC6 inhibition by tubastatin A is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness. Cell Death Dis. 8:e30282017. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang J, Shaik NF, Yi B, Wei X, Yang XF, Naik UP, Summer R, Yan G, Xu X and Sun J: The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J Biol Chem. 294:19565–19576. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nomura Y, Nakano M, Woo Sung H, Han M and Pandey D: Inhibition of HDAC6 activity protects against endothelial dysfunction and atherogenesis in vivo: A role for HDAC6 neddylation. Front Physiol. 12:6757242021. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang H, Chen J, Wang F, Wang S, Zhou Q, Ying J, Huang S, Wang P and Yuan F: ACY-1215, a HDAC6 inhibitor, decreases the dexamethasone-induced suppression of osteogenesis in MC3T3-E1 cells. Mol Med Rep. 22:2451–2459. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu A, Lu Q, Luo L, Li J, Ke J, Liu Y and Feng X: HDAC6 inhibitor ACY-1215 improves neuropathic pain and its comorbidities in rats of peripheral nerve injury by regulating neuroinflammation. Chem Biol Interact. 353:1098032022. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Xie S, Liu Z, Ran J, Li Y, Wang J, Yang Y, Zhou J, Li D and Liu M: HDAC6 deacetylase activity is critical for lipopolysaccharide-induced activation of macrophages. PLoS One. 9:e1107182014. View Article : Google Scholar : PubMed/NCBI | |
Kim YH, Bagot M, Pinter-Brown L, Rook AH, Porcu P, Horwitz SM, Whittaker S, Tokura Y, Vermeer M, Zinzani PL, et al: Mogamulizumab versus Vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): An international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19:1192–1204. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Wang Q, Zhang X, Lu F, Sun M, Zeng P, Sun L, She L, Wang B, Zhang Y, et al: Gelated Vorinostat with inner-lysosome triggered release for tumor-targeting chemotherapy. Colloids Surf B Biointerfaces. 194:1111442020. View Article : Google Scholar : PubMed/NCBI | |
Praseetha S, Bandaru S, Yadav M, Nayarisseri A and Sureshkumar S: Common SAR derived from multiple QSAR models on vorinostat derivatives targeting HDACs in tumor treatment. Curr Pharm Des. 22:5072–5078. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Leng Y, Wang J, Liao HM, Bergman J, Leeds P, Kozikowski A and Chuang DM: Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: Potential roles of α-tubulin acetylation and FGF-21 up-regulation. Sci Rep. 6:196262016. View Article : Google Scholar | |
Shen S, Svoboda M, Zhang G, Cavasin MA, Motlova L, McKinsey TA, Eubanks JH, Bařinka C and Kozikowski AP: Structural and in vivo characterization of tubastatin A, a widely used histone deacetylase 6 inhibitor. ACS Med Chem Lett. 11:706–712. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cosenza M and Pozzi S: The therapeutic strategy of HDAC6 inhibitors in lymphoproliferative disease. Int J Mol Sci. 19:23372018. View Article : Google Scholar : PubMed/NCBI | |
Vogl DT, Raje N, Jagannath S, Richardson P, Hari P, Orlowski R, Supko JG, Tamang D, Yang M, Jones SS, et al: Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin Cancer Res. 23:3307–3315. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yee AJ, Bensinger WI, Supko JG, Voorhees PM, Berdeja JG, Richardson PG, Libby EN, Wallace EE, Birrer NE, Burke JN, et al: Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: A multicentre phase 1b trial. Lancet Oncol. 17:1569–1578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Adeegbe DO, Liu Y, Lizotte PH, Kamihara Y, Aref AR, Almonte C, Dries R, Li Y, Liu S, Wang X, et al: Synergistic immunostimulatory effects and therapeutic benefit of combined histone deacetylase and bromodomain inhibition in non-small cell lung cancer. Cancer Discov. 7:852–867. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hideshima T, Qi J, Paranal RM, Tang W, Greenberg E, West N, Colling ME, Estiu G, Mazitschek R, Perry JA, et al: Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proc Natl Acad Sci USA. 113:13162–13167. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang QQ, Zhang WJ and Chang S: HDAC6 inhibition: A significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol. 14:11688482023. View Article : Google Scholar : PubMed/NCBI | |
Granzotto A, Vissel B and Sensi SL: Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. Elife. 13:e906332024. View Article : Google Scholar : PubMed/NCBI | |
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR and Lévesque M: Animal models of Parkinson's disease: Bridging the gap between disease hallmarks and research questions. Transl Neurodegener. 12:362023. View Article : Google Scholar : PubMed/NCBI | |
Karp NA, Berdoy M, Gray K, Hunt L, Jennings M, Kerton A, Leach M, Tremoleda JL, Gledhill J, Pearl EJ, et al: The sex inclusive research framework to address sex bias in preclinical research proposals. Nat Commun. 16:37632025. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Sang S, Ren W, Pei Y, Bian Y, Chen Y and Sun H: Inhibition of histone deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020). Eur J Med Chem. 226:1138742021. View Article : Google Scholar : PubMed/NCBI | |
Phipps AJ, Dwyer S, Collins JM, Kabir F, Atkinson RA, Chowdhury MA, Matthews L, Dixit D, Terry RS, Smith J, et al: HDAC6 inhibition as a mechanism to prevent neurodegeneration in the mSOD1G93A mouse model of ALS. Heliyon. 10:e345872024. View Article : Google Scholar : | |
Takizawa D, Kakizaki S, Horiguchi N, Tojima H, Yamazaki Y, Ichikawa T, Sato K and Mori M: Histone deacetylase inhibitors induce cytochrome P450 2B by activating nuclear receptor constitutive androstane receptor. Drug Metab Dispos. 38:1493–1498. 2010. View Article : Google Scholar : PubMed/NCBI | |
Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, Jarpe M, van Duzer JH, Mazitschek R, Ogier WC, et al: Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 119:2579–2589. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Li L, Cheng B and Li D: Small molecules targeting HDAC6 for cancer treatment: Current progress and novel strategies. Biomed Pharmacother. 178:1172182024. View Article : Google Scholar : PubMed/NCBI | |
Regna NL, Vieson MD, Luo XM, Chafin CB, Puthiyaveetil AG, Hammond SE, Caudell DL, Jarpe MB and Reilly CM: Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clin Immunol. 162:58–73. 2016. View Article : Google Scholar |