
Antibacterial and antiviral properties of punicalagin (Review)
- Authors:
- Zhuoning Song
- Yadong Wang
- Peihua Zhang
- Ying Wang
- Yuan Li
- Fang Liu
- Jinzhao Long
- Haiyan Yang
-
Affiliations: Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China, Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China, Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China - Published online on: August 26, 2025 https://doi.org/10.3892/mi.2025.264
- Article Number: 65
-
Copyright : © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
![]() |
![]() |
Zhou YX, Cao XY and Peng C: Antimicrobial activity of natural products against MDR bacteria: A scientometric visualization analysis. Front Pharmacol. 13(1000974)2022.PubMed/NCBI View Article : Google Scholar | |
Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E and Santacroce L: Antibiotic resistance to mycobacterium tuberculosis and potential use of natural and biological products as alternative anti-mycobacterial agents. Antibiotics (Basel). 11(1431)2022.PubMed/NCBI View Article : Google Scholar | |
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y, Dong D and Xiang H: Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv. 13:7798–7817. 2023.PubMed/NCBI View Article : Google Scholar | |
Ajebli M and Eddouks M: The promising role of plant tannins as bioactive antidiabetic agents. Curr Med Chem. 26:4852–4884. 2019.PubMed/NCBI View Article : Google Scholar | |
Serafini M, Peluso I and Raguzzini A: Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 69:273–278. 2010.PubMed/NCBI View Article : Google Scholar | |
Tessema FB, Gonfa YH, Asfaw TB, Tadesse TG, Tadesse MG, Bachheti A, Pandey DP, Wabaidur SM, Dahlous KA, Širić I, et al: Flavonoids and phenolic acids from aerial part of ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-shigellosis activity and in silico molecular docking studies. Molecules. 28(1111)2023.PubMed/NCBI View Article : Google Scholar | |
Aziz ZAA, Ahmad A, Setapar SHM, Karakucuk A, Azim MM, Lokhat D, Rafatullah M, Ganash M, Kamal MA and Ashraf GM: Essential oils: Extraction techniques, pharmaceutical and therapeutic potential-a review. Curr Drug Metab. 19:1100–1110. 2018.PubMed/NCBI View Article : Google Scholar | |
Güçlü-Ustündağ O and Mazza G: Saponins: Properties, applications and processing. Crit Rev Food Sci Nutr. 47:231–258. 2007.PubMed/NCBI View Article : Google Scholar | |
Bergman ME, Davis B and Phillips MA: Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules. 24(3961)2019.PubMed/NCBI View Article : Google Scholar | |
Bhattarai N, Kumbhar AA, Pokharel YR and Yadav PN: Anticancer potential of coumarin and its derivatives. Mini Rev Med Chem. 21:2996–3029. 2021.PubMed/NCBI View Article : Google Scholar | |
Tchegnitegni Toussie B, Nguengang RT, Mawabo IK, Teponno RB, Kezetas Bankeu JJ, Chouna JR, Nkenfou CN, Tapondjou LA, Sewald N and Lenta BN: Bioactive arylnaphthalide lignans from justicia depauperata. J Nat Prod. 85:2731–2739. 2022.PubMed/NCBI View Article : Google Scholar | |
Barbieri M and Heard CM: Isolation of punicalagin from Punica granatum rind extract using mass-directed semi-preparative ESI-AP single quadrupole LC-MS. J Pharm Biomed Anal. 166:90–94. 2019.PubMed/NCBI View Article : Google Scholar | |
Hassan MHU, Shahbaz M, Momal U, Naeem H, Imran M, Abdelgawad MA, Ghoneim MM, Mostafa EM, El-Ghorab AH, Alsagaby SA, et al: Exploring punicalagin potential against cancers: A comprehensive review. Food Sci Nutr. 13(e70072)2025.PubMed/NCBI View Article : Google Scholar | |
Abu-Elfotuh K, Abbas AN, Najm MAA, Qasim QA, Hamdan AME, Abdelrehim AB, Gowifel AMH, Al-Najjar AH, Atwa AM, Kozman MR, et al: Neuroprotective effects of punicalagin and/or micronized zeolite clinoptilolite on manganese-induced Parkinson's disease in a rat model: Involvement of multiple pathways. CNS Neurosci Ther. 30(e70008)2024.PubMed/NCBI View Article : Google Scholar | |
Zoofeen U, Shah M, Sultan S, Ehtesham E, Shah I, Sharif N, Khan M and Shah FA: Punicalagin improves inflammation and oxidative stress in rat model of pelvic inflammatory disease. Nat Prod Res. 39:2780–2786. 2025.PubMed/NCBI View Article : Google Scholar | |
Siddiqui N, Saifi A, Chaudhary A, Tripathi PN, Chaudhary A and Sharma A: Multifaceted neuroprotective role of punicalagin: A review. Neurochem Res. 49:1427–1436. 2024.PubMed/NCBI View Article : Google Scholar | |
Alalawi S, Albalawi F and Ramji DP: The role of punicalagin and its metabolites in atherosclerosis and risk factors associated with the disease. Int J Mol Sci. 24(8476)2023.PubMed/NCBI View Article : Google Scholar | |
Venusova E, Kolesarova A, Horky P and Slama P: Physiological and immune functions of punicalagin. Nutrients. 13(2150)2021.PubMed/NCBI View Article : Google Scholar | |
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P, Abdou NS, et al: Punicalagin's protective effects on Parkinson's progression in socially isolated and socialized rats: insights into multifaceted pathway. Pharmaceutics. 15(2420)2023.PubMed/NCBI View Article : Google Scholar | |
Al-Khawalde AAA, Abukhalil MH, Jghef MM, Alfwuaires MA, Alaryani FS, Aladaileh SH, Algefare AI, Karimulla S, Alasmari F, Aldal'in HK, et al: Punicalagin protects against the development of methotrexate-induced hepatotoxicity in mice via activating Nrf2 signaling and decreasing oxidative stress, inflammation, and cell death. Int J Mol Sci. 23(12334)2022.PubMed/NCBI View Article : Google Scholar | |
Xu W, Zhang T, Wang Z, Liu T, Liu Y, Cao Z and Sui Z: Two potent cytochrome P450 2D6 inhibitors found in Rhodiola rosea. Pharmazie. 68:974–976. 2013.PubMed/NCBI | |
Liu F, Smith AD, Wang TTY, Pham Q, Yang H and Li RW: Multi-omics analysis detected multiple pathways by which pomegranate punicalagin exerts its biological effects in modulating host-microbiota interactions in murine colitis models. Food Funct. 14:3824–3837. 2023.PubMed/NCBI View Article : Google Scholar | |
Liu F, Smith AD, Wang TTY, Pham Q, Yang H and Li RW: Ellagitannin punicalagin disrupts the pathways related to bacterial growth and affects multiple pattern recognition receptor signaling by acting as a selective histone deacetylase inhibitor. J Agric Food Chem. 71:5016–5026. 2023.PubMed/NCBI View Article : Google Scholar | |
Yaidikar L and Thakur S: Punicalagin attenuated cerebral ischemia-reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3. Mol Cell Biochem. 402:141–148. 2015.PubMed/NCBI View Article : Google Scholar | |
Kim JH, Kwack MH and Lee WJ: Effects of antioxidants on skin hydration, inflammatory cytokines, and keratinocyte differentiation markers in a PM(10)-exposed skin barrier-disrupted mouse model. Int J Immunopathol Pharmacol. 38(3946320241303860)2024.PubMed/NCBI View Article : Google Scholar | |
An X, Zhang Y, Cao Y, Chen J, Qin H and Yang L: Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients. 12(1516)2020.PubMed/NCBI View Article : Google Scholar | |
Berdowska I, Matusiewicz M and Fecka I: Punicalagin in cancer prevention-via signaling pathways targeting. Nutrients. 13(2733)2021.PubMed/NCBI View Article : Google Scholar | |
Xu J, Cao K, Liu X, Zhao L, Feng Z and Liu J: Punicalagin regulates signaling pathways in inflammation-associated chronic diseases. Antioxidants (Basel). 11(29)2021.PubMed/NCBI View Article : Google Scholar | |
da Silva RA, Ishikiriama BLC, Ribeiro Lopes MM, de Castro RD, Garcia CR, Porto VC, Santos CF, Neppelenbroek KH and Lara VS: Antifungal activity of Punicalagin-nystatin combinations against Candida albicans. Oral Dis. 26:1810–1819. 2020.PubMed/NCBI View Article : Google Scholar | |
Kiran S, Tariq A, Iqbal S, Naseem Z, Siddique W, Jabeen S, Bashir R, Hussain A, Rahman M, Habib FE, et al: Punicalagin, a pomegranate polyphenol sensitizes the activity of antibiotics against three MDR pathogens of the Enterobacteriaceae. BMC Complement Med Ther. 24(93)2024.PubMed/NCBI View Article : Google Scholar | |
Mandal A and Hazra B: Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother Res. 37:4353–4374. 2023.PubMed/NCBI View Article : Google Scholar | |
Ismat F, Tariq A, Shaheen A, Ullah R, Raheem K, Muddassar M, Mahboob S, Abbas W, Iqbal M and Rahman M: Inhibition of NS2B-NS3 protease from all four serotypes of dengue virus by punicalagin, punicalin and ellagic acid identified from Punica granatum. J Biomol Struct Dyn: Feb 19, 2024 (Epub ahead of print). | |
Song W, Wang L, Jin M, Guo X, Wang X, Guan J and Zhao Y: Punicalagin, an inhibitor of sortase a, is a promising therapeutic drug to combat methicillin-resistant staphylococcus aureus infections. Antimicrob Agents Chemother. 66(e0022422)2022.PubMed/NCBI View Article : Google Scholar | |
Liu H, Zhu W, Zou Y and Xia X: Antimicrobial activity and mechanisms of punicalagin against Vibrio parahaemolyticus. Foods. 13(1366)2024.PubMed/NCBI View Article : Google Scholar | |
Gosset-Erard C, Zhao M, Lordel-Madeleine S and Ennahar S: Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chem. 352(129396)2021.PubMed/NCBI View Article : Google Scholar | |
Taguri T, Tanaka T and Kouno I: Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull. 27:1965–1969. 2004.PubMed/NCBI View Article : Google Scholar | |
Li G, Yan C, Xu Y, Feng Y, Wu Q, Lv X, Yang B, Wang X and Xia X: Punicalagin inhibits Salmonella virulence factors and has anti-quorum-sensing potential. Appl Environ Microbiol. 80:6204–6211. 2014.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Shi C, Wu Q, Zheng Z, Liu P, Li G, Peng X and Xia X: Antimicrobial activity of punicalagin against staphylococcus aureus and its effect on biofilm formation. Foodborne Pathog Dis. 14:282–287. 2017.PubMed/NCBI View Article : Google Scholar | |
Li G, Xu Y, Pan L and Xia X: Punicalagin damages the membrane of salmonella typhimurium. J Food Prot. 83:2102–2106. 2020.PubMed/NCBI View Article : Google Scholar | |
Cai X, Zheng W and Li Z: High-throughput screening strategies for the development of anti-virulence inhibitors against staphylococcus aureus. Curr Med Chem. 26:2297–2312. 2019.PubMed/NCBI View Article : Google Scholar | |
Mühlen S and Dersch P: Anti-virulence strategies to target bacterial infections. Curr Top Microbiol Immunol. 398:147–183. 2016.PubMed/NCBI View Article : Google Scholar | |
Rasko DA and Sperandio V: Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 9:117–128. 2010.PubMed/NCBI View Article : Google Scholar | |
Goodyear CS and Silverman GJ: Death by a B cell superantigen: In vivo VH-targeted apoptotic supraclonal B cell deletion by a Staphylococcal Toxin. J Exp Med. 197:1125–1139. 2003.PubMed/NCBI View Article : Google Scholar | |
Falugi F, Kim HK, Missiakas DM and Schneewind O: Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. mBio. 4:e00575–00513. 2013.PubMed/NCBI View Article : Google Scholar | |
Mun SH, Kong R, Seo YS, Zhou T, Kang OH, Shin DW and Kwon DY: Subinhibitory concentrations of punicalagin reduces expression of virulence-related exoproteins by Staphylococcus aureus. FEMS Microbiol Lett. 363(fnw253)2016.PubMed/NCBI View Article : Google Scholar | |
Qiu J, Wang J, Luo H, Du X, Li H, Luo M, Dong J, Chen Z and Deng X: The effects of subinhibitory concentrations of costus oil on virulence factor production in Staphylococcus aureus. J Appl Microbiol. 110:333–340. 2011.PubMed/NCBI View Article : Google Scholar | |
Flemming HC and Wingender J: The biofilm matrix. Nat Rev Microbiol. 8:623–633. 2010.PubMed/NCBI View Article : Google Scholar | |
Xu S, Kang A, Tian Y, Li X, Qin S, Yang R and Guo Y: Plant flavonoids with antimicrobial activity against methicillin-resistant staphylococcus aureus (MRSA). ACS Infect Dis. 10:3086–3097. 2024.PubMed/NCBI View Article : Google Scholar | |
Singh S, Singh SK, Chowdhury I and Singh R: Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 11:53–62. 2017.PubMed/NCBI View Article : Google Scholar | |
Rumbaugh KP and Sauer K: Biofilm dispersion. Nat Rev Microbiol. 18:571–586. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Guo W, Luo D, Li P, Xiang J, Chen J, Xia X and Xie Q: Antibiofilm effects of punicalagin against Staphylococcus aureus in vitro. Front Microbiol. 14(1175912)2023.PubMed/NCBI View Article : Google Scholar | |
Ultee A, Kets EP and Smid EJ: Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 65:4606–4610. 1999.PubMed/NCBI View Article : Google Scholar | |
Azimi S, Klementiev AD, Whiteley M and Diggle SP: Bacterial quorum sensing during infection. Annu Rev Microbiol. 74:201–219. 2020.PubMed/NCBI View Article : Google Scholar | |
Garg N, Manchanda G and Kumar A: Bacterial quorum sensing: Circuits and applications. Antonie Van Leeuwenhoek. 105:289–305. 2014.PubMed/NCBI View Article : Google Scholar | |
Abisado RG, Benomar S, Klaus JR, Dandekar AA and Chandler JR: Bacterial quorum sensing and microbial community interactions. mBio. 9:e02331–17. 2018.PubMed/NCBI View Article : Google Scholar | |
Miller MB and Bassler BL: Quorum sensing in bacteria. Annu Rev Microbiol. 55:165–199. 2001.PubMed/NCBI View Article : Google Scholar | |
Finch RG, Pritchard DI, Bycroft BW, Williams P and Stewart GS: Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother. 42:569–571. 1998.PubMed/NCBI View Article : Google Scholar | |
Hentzer M and Givskov M: Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest. 112:1300–1307. 2003.PubMed/NCBI View Article : Google Scholar | |
Rudkin JK, Laabei M, Edwards AM, Joo HS, Otto M, Lennon KL, O'Gara JP, Waterfield NR and Massey RC: Oxacillin alters the toxin expression profile of community-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 58:1100–1107. 2014.PubMed/NCBI View Article : Google Scholar | |
Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy BA, Suckow MA, Wolter WR, Schroeder VA, Burnham CA, Mobashery S, et al: Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat Chem Biol. 11:855–861. 2015.PubMed/NCBI View Article : Google Scholar | |
Taylor PW: Alternative natural sources for a new generation of antibacterial agents. Int J Antimicrob Agents. 42:195–201. 2013.PubMed/NCBI View Article : Google Scholar | |
Mun SH, Kang OH, Kong R, Zhou T, Kim SA, Shin DW and Kwon DY: Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J Pharmacol Sci. 137:317–323. 2018.PubMed/NCBI View Article : Google Scholar | |
Chusri S, Villanueva I, Voravuthikunchai SP and Davies J: Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J Antimicrob Chemother. 64:1203–1211. 2009.PubMed/NCBI View Article : Google Scholar | |
Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, et al: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 395:514–523. 2020.PubMed/NCBI View Article : Google Scholar | |
Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W, Gao GF and Wu G: A novel coronavirus genome identified in a cluster of pneumonia cases - Wuhan, China 2019-2020. China CDC Wkly. 2:61–62. 2020.PubMed/NCBI | |
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, et al: A new coronavirus associated with human respiratory disease in China. Nature. 579:265–269. 2020.PubMed/NCBI View Article : Google Scholar | |
Lin LT, Chen TY, Lin SC, Chung CY, Lin TC, Wang GH, Anderson R, Lin CC and Richardson CD: Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol. 13(187)2013.PubMed/NCBI View Article : Google Scholar | |
Chen HF, Wang WJ, Chen CY, Chang WC, Hsueh PR, Peng SL, Wu CS, Chen Y, Huang HY, Shen WJ, et al: The natural tannins oligomeric proanthocyanidins and punicalagin are potent inhibitors of infection by SARS-CoV-2. Elife. 12(e84899)2023.PubMed/NCBI View Article : Google Scholar | |
Lu L, Peng Y, Yao H, Wang Y, Li J, Yang Y and Lin Z: Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro. Antiviral Res. 206(105389)2022.PubMed/NCBI View Article : Google Scholar | |
Saadh MJ, Almaaytah AM, Alaraj M, Dababneh MF, Sa'adeh I, Aldalaen SM, Kharshid AM, Alboghdadly A, Hailat M, Khaleel A, et al: Punicalagin and zinc (II) ions inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Eur Rev Med Pharmacol Sci. 25:3908–3913. 2021.PubMed/NCBI View Article : Google Scholar | |
Du R, Cooper L, Chen Z, Lee H, Rong L and Cui Q: Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CL(pro). Antiviral Res. 190(105075)2021.PubMed/NCBI View Article : Google Scholar | |
Liu B, Jiao XQ, Dong XF, Guo P, Wang SB and Qin ZH: Saikosaponin B2, punicalin, and punicalagin in vitro block cellular entry of feline herpesvirus-1. Viruses. 16(231)2024.PubMed/NCBI View Article : Google Scholar | |
Sanna C, Marengo A, Acquadro S, Caredda A, Lai R, Corona A, Tramontano E, Rubiolo P and Esposito F: In Vitro Anti-HIV-1 reverse transcriptase and integrase properties of punica granatum L. Leaves, bark, and peel extracts and their main compounds. Plants (Basel). 10(2124)2021.PubMed/NCBI View Article : Google Scholar | |
Salles TS, Meneses MDF, Caldas LA, Sá-Guimarães TE, de Oliveira DM, Ventura JA, Azevedo RC, Kuster RM, Soares MR and Ferreira DF: Virucidal and antiviral activities of pomegranate (Punica granatum) extract against the mosquito-borne Mayaro virus. Parasit Vectors. 14(443)2021.PubMed/NCBI View Article : Google Scholar | |
Li P, Du R, Chen Z, Wang Y, Zhan P, Liu X, Kang D, Chen Z, Zhao X, Wang L, et al: Punicalagin is a neuraminidase inhibitor of influenza viruses. J Med Virol. 93:3465–3472. 2021.PubMed/NCBI View Article : Google Scholar | |
Javadi-Farsani F, Karimi A, Razavi Nikoo H, Moradi MT and Tabarraei A: An in vitro antiviral evaluation of punicalagin toward influenza A virus. Avicenna J Phytomed. 14:496–504. 2024.PubMed/NCBI View Article : Google Scholar | |
Lin LT, Chen TY, Chung CY, Noyce RS, Grindley TB, McCormick C, Lin TC, Wang GH, Lin CC and Richardson CD: Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol. 85:4386–4398. 2011.PubMed/NCBI View Article : Google Scholar | |
Li ZJ, Zhang HY, Ren LL, Lu QB, Ren X, Zhang CH, Wang YF, Lin SH, Zhang XA, Li J, et al: Etiological and epidemiological features of acute respiratory infections in China. Nat Commun. 12(5026)2021.PubMed/NCBI View Article : Google Scholar | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang X, Xia S, Wang Q, Xu W, Li W, Lu L and Jiang S: Broad-spectrum coronavirus fusion inhibitors to combat COVID-19 and other emerging coronavirus diseases. Int J Mol Sci. 21(3843)2020.PubMed/NCBI View Article : Google Scholar | |
Invernizzi L, Moyo P, Cassel J, Isaacs FJ, Salvino JM, Montaner LJ, Tietjen I and Maharaj V: Use of hyphenated analytical techniques to identify the bioactive constituents of Gunnera perpensa L., a South African medicinal plant, which potently inhibit SARS-CoV-2 spike glycoprotein-host ACE2 binding. Anal Bioanal Chem. 414:3971–3985. 2022.PubMed/NCBI View Article : Google Scholar | |
Inniss NL, Rzhetskaya M, Ling-Hu T, Lorenzo-Redondo R, Bachta KE, Satchell KJF and Hultquist JF: Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays. SLAS Discov. 29(100145)2024.PubMed/NCBI View Article : Google Scholar | |
Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, Shr HL, Chang GG, Wang AH and Liang PH: Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem. 280:31257–31266. 2005.PubMed/NCBI View Article : Google Scholar | |
Kim Y, Mandadapu SR, Groutas WC and Chang KO: Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease. Antiviral Res. 97:161–168. 2013.PubMed/NCBI View Article : Google Scholar | |
Qiao J, Li YS, Zeng R, Liu FL, Luo RH, Huang C, Wang YF, Zhang J, Quan B, Shen C, et al: SARS-CoV-2 M(pro) inhibitors with antiviral activity in a transgenic mouse model. Science. 371:1374–1378. 2021.PubMed/NCBI View Article : Google Scholar | |
Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Pawlik B, Wang X, Jochmans D, Neyts J, Młynarski W, et al: SARS-CoV-2 M(pro) inhibitors and activity-based probes for patient-sample imaging. Nat Chem Biol. 17:222–228. 2021.PubMed/NCBI View Article : Google Scholar | |
Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, Zhu Y, Zhu C, Hu T, Du X, et al: Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol. 27:529–532. 2020.PubMed/NCBI View Article : Google Scholar | |
Li P, Cui Q, Wang L, Zhao X, Zhang Y, Manicassamy B, Yang Y, Rong L and Du R: A simple and robust approach for evaluation of antivirals using a recombinant influenza virus expressing gaussia luciferase. Viruses. 10(325)2018.PubMed/NCBI View Article : Google Scholar | |
Shao W, Li X, Goraya MU, Wang S and Chen JL: Evolution of influenza a virus by mutation and re-assortment. Int J Mol Sci. 18(1650)2017.PubMed/NCBI View Article : Google Scholar | |
Li P, Du R, Wang Y, Hou X, Wang L, Zhao X, Zhan P, Liu X, Rong L and Cui Q: Identification of chebulinic acid and chebulagic acid as novel influenza viral neuraminidase inhibitors. Front Microbiol. 11(182)2020.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Wang Y, Cui Q, Li P, Wang L, Chen Z, Rong L and Du R: A parallel phenotypic versus target-based screening strategy for RNA-Dependent RNA polymerase inhibitors of the influenza a virus. Viruses. 11(826)2019.PubMed/NCBI View Article : Google Scholar | |
Haidari M, Ali M, Ward Casscells S III and Madjid M: Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine. 16:1127–1136. 2009.PubMed/NCBI View Article : Google Scholar | |
Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ and Solomon T: Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 9:1097–1105. 2010.PubMed/NCBI View Article : Google Scholar | |
Huang WC, Huang LM, Lu CY, Cheng AL and Chang LY: Atypical hand-foot-mouth disease in children: A hospital-based prospective cohort study. Virol J. 10(209)2013.PubMed/NCBI View Article : Google Scholar | |
Lin CJ, Liu CH, Wang JY, Lin CC, Li YF, Richardson CD and Lin LT: Small molecules targeting coxsackievirus A16 capsid inactivate viral particles and prevent viral binding. Emerg Microbes Infect. 7(162)2018.PubMed/NCBI View Article : Google Scholar | |
Liu CH, Kuo YT, Lin CJ and Lin LT: Involvement of cell surface glycosaminoglycans in chebulagic acid's and punicalagin's antiviral activities against Coxsackievirus A16 infection. Phytomedicine. 120(155047)2023.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Xiu J, Zhang L, Qin C and Liu J: Antiviral activity of punicalagin toward human enterovirus 71 in vitro and in vivo. Phytomedicine. 20:67–70. 2012.PubMed/NCBI View Article : Google Scholar | |
Asandem DA, Segbefia SP, Kusi KA and Bonney JHK: Hepatitis B virus infection: A mini review. Viruses. 16(724)2024.PubMed/NCBI View Article : Google Scholar | |
Zoulim F and Durantel D: Antiviral therapies and prospects for a cure of chronic hepatitis B. Cold Spring Harb Perspect Med. 5(a021501)2015.PubMed/NCBI View Article : Google Scholar | |
Guo JT and Guo H: Metabolism and function of hepatitis B virus cccDNA: Implications for the development of cccDNA-targeting antiviral therapeutics. Antiviral Res. 122:91–100. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu C, Cai D, Zhang L, Tang W, Yan R, Guo H and Chen X: Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA. Antiviral Res. 134:97–107. 2016.PubMed/NCBI View Article : Google Scholar | |
Shepard CW, Simard EP, Finelli L, Fiore AE and Bell BP: Hepatitis B virus infection: Epidemiology and vaccination. Epidemiol Rev. 28:112–125. 2006.PubMed/NCBI View Article : Google Scholar | |
Gaskell R, Dawson S, Radford A and Thiry E: Feline herpesvirus. Vet Res. 38:337–354. 2007.PubMed/NCBI View Article : Google Scholar | |
Synowiec A, Dąbrowska A, Pachota M, Baouche M, Owczarek K, Niżański W and Pyrc K: Feline herpesvirus 1 (FHV-1) enters the cell by receptor-mediated endocytosis. J Virol. 97(e0068123)2023.PubMed/NCBI View Article : Google Scholar | |
Hilterbrand AT, Daly RE and Heldwein EE: Contributions of the four essential entry glycoproteins to HSV-1 tropism and the selection of entry routes. mBio. 12:e00143–21. 2021.PubMed/NCBI View Article : Google Scholar | |
Gaudreault NN, Madden DW, Wilson WC, Trujillo JD and Richt JA: African swine fever virus: An emerging DNA arbovirus. Front Vet Sci. 7(215)2020.PubMed/NCBI View Article : Google Scholar | |
Geng R, Yin D, Liu Y, Lv H, Zhou X, Bao C, Gong L, Shao H, Qian K, Chen H and Qin A: Punicalagin inhibits african swine fever virus replication by targeting early viral stages and modulating inflammatory pathways. Vet Sci. 11(440)2024.PubMed/NCBI View Article : Google Scholar | |
Landovitz RJ, Scott H and Deeks SG: Prevention, treatment and cure of HIV infection. Nat Rev Microbiol. 21:657–670. 2023.PubMed/NCBI View Article : Google Scholar | |
Vidya Vijayan KK, Karthigeyan KP, Tripathi SP and Hanna LE: Pathophysiology of CD4+ T-Cell depletion in HIV-1 and HIV-2 infections. Front Immunol. 8(580)2017.PubMed/NCBI View Article : Google Scholar | |
Goguen RP, Chen MJ, Dunkley ORS, Gatignol A and Scarborough RJ: Gene therapy to cure HIV infection. Virologie (Montrouge). 27:63–84. 2023.PubMed/NCBI View Article : Google Scholar | |
de Carvalho AC, Dias CSB, Coimbra LD, Rocha RPF, Borin A, Fontoura MA, Carvalho M, Proost P, Nogueira ML, Consonni SR, et al: Characterization of systemic disease development and paw inflammation in a susceptible mouse model of mayaro virus infection and validation using x-ray synchrotron microtomography. Int J Mol Sci. 24(4799)2023.PubMed/NCBI View Article : Google Scholar |