
Role of monocytes in the pathogenesis of antiphospholipid syndrome and potential therapeutic targets (Review)
- Authors:
- Rongxiu Huo
- Chengcheng Wei
- Yanting Yang
- Yang Yang
- Xiaocong Huo
- Bangqin Wang
- Danli Meng
- Yijia Huang
- Rongjun Huang
- Jinying Lin
- Xinxiang Huang
-
Affiliations: Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China - Published online on: September 2, 2025 https://doi.org/10.3892/mmr.2025.13670
- Article Number: 305
-
Copyright: © Huo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Barbhaiya M, Zuily S, Naden R, Hendry A, Manneville F, Amigo MC, Amoura Z, Andrade D, Andreoli L, Artim-Esen B, et al: 2023 ACR/EULAR antiphospholipid syndrome classification criteria. Ann Rheum Dis. 82:1258–1270. 2023. View Article : Google Scholar : PubMed/NCBI | |
Radic M and Pattanaik D: Cellular and molecular mechanisms of anti-phospholipid syndrome. Front Immunol. 9:9692018. View Article : Google Scholar : PubMed/NCBI | |
Knight JS and Kanthi Y: Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 44:347–362. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hernández-Molina G, González-Pérez I, Pacheco-Molina C and Cabral AR: Quality of life in patients with antiphospholipid syndrome is related to disease burden and anticoagulant therapy. Int J Rheum Dis. 20:755–759. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chighizola CB, Crisafulli F, Hoxha A, Carubbi F, Bellan M, Monti S, Costa L, Baldi C, Radin M, Praino E, et al: Psychosocial burden in young patients with primary anti-phospholipid syndrome: An Italian nationwide survey (The AQUEOUS study). Clin Exp Rheumatol. 39:938–946. 2021. View Article : Google Scholar : PubMed/NCBI | |
Velásquez M, Peláez LF, Rojas M, Narváez-Sánchez R, Velásquez JA, Escudero C, San Martín S and Cadavid ÁP: Differences in endothelial activation and dysfunction induced by antiphospholipid antibodies among groups of patients with thrombotic, refractory, and non-refractory antiphospholipid syndrome. Front Physiol. 12:7647022021. View Article : Google Scholar : PubMed/NCBI | |
Redecha P, Tilley R, Tencati M, Salmon JE, Kirchhofer D, Mackman N and Girardi G: Tissue factor: A link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood. 110:2423–2431. 2007. View Article : Google Scholar : PubMed/NCBI | |
Salmon JE and Girardi G: Antiphospholipid antibodies and pregnancy loss: A disorder of inflammation. J Reprod Immunol. 77:51–56. 2008. View Article : Google Scholar : PubMed/NCBI | |
Proulle V, Furie RA, Merrill-Skoloff G, Furie BC and Furie B: Platelets are required for enhanced activation of the endothelium and fibrinogen in a mouse thrombosis model of APS. Blood. 124:611–622. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wahl D, Membre A, Perret-Guillaume C, Regnault V and Lecompte T: Mechanisms of antiphospholipid-induced thrombosis: Effects on the protein C system. Curr Rheumatol Rep. 11:77–81. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bu C, Gao L, Xie W, Zhang J, He Y, Cai G and McCrae KR: beta2-glycoprotein i is a cofactor for tissue plasminogen activator-mediated plasminogen activation. Arthritis Rheum. 60:559–568. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Núñez-Álvarez C, Hernández-Ramírez D, Bockenstedt PL, Liaw PC, Cabral AR and Knight JS: Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: A newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 67:2990–3003. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuwana M: Beta2-glycoprotein I: Antiphospholipid syndrome and T-cell reactivity. Thromb Res. 114:347–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chaturvedi S, Alluri R and McCrae KR: Extracellular vesicles in the antiphospholipid syndrome. Semin Thromb Hemost. 44:493–504. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rand JH, Wu XX, Guller S, Gil J, Guha A, Scher J and Lockwood CJ: Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion. Am J Obstet Gynecol. 171:1566–1572. 1994. View Article : Google Scholar : PubMed/NCBI | |
Doğan Z, Bektaşoğlu G, Dümür Ş, Uzun H, Erden İ and Yurtdaş M: Evaluation of the relationship between monocyte to high-density lipoprotein cholesterol ratio and thrombus burden in patients with deep vein thrombosis. Rev Assoc Med Bras (1992). 69:e202212112023. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Zhou L, Chen J, Lu Y, Cao C, Lv S, Wei Z, Wang L, Chen J, Hu X, et al: The immune atlas of human deciduas with unexplained recurrent pregnancy loss. Front Immunol. 12:6890192021. View Article : Google Scholar : PubMed/NCBI | |
Oku K, Amengual O and Atsumi T: Pathophysiology of thrombosis and pregnancy morbidity in the antiphospholipid syndrome. Eur J Clin Invest. 42:1126–1135. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xourgia E and Tektonidou MG: An update on antiphospholipid syndrome. Curr Rheumatol Rep. 23:842022. View Article : Google Scholar : PubMed/NCBI | |
Dabit JY, Valenzuela-Almada MO, Vallejo-Ramos S and Duarte-García A: Epidemiology of antiphospholipid syndrome in the general population. Curr Rheumatol Rep. 23:852022. View Article : Google Scholar : PubMed/NCBI | |
Hwang JJ, Shin SH, Kim YJ, Oh YM, Lee SD, Kim YH, Choi CW and Lee JS: Epidemiology of antiphospholipid syndrome in Korea: A nationwide population-based study. J Korean Med Sci. 35:e352020. View Article : Google Scholar : PubMed/NCBI | |
Radin M, Sciascia S, Bazzan M, Bertero T, Carignola R, Montabone E, Montaruli B, Vaccarino A, Cecchi I, Rubini E, et al: Antiphospholipid syndrome is still a rare disease-estimated prevalence in the piedmont and aosta valley regions of northwest Italy: Comment on the article by Duarte-García et al. Arthritis Rheumatol. 72:1774–1776. 2020. View Article : Google Scholar : PubMed/NCBI | |
Duarte-García A, Pham MM, Crowson CS, Amin S, Moder KG, Pruthi RK, Warrington KJ and Matteson EL: The epidemiology of antiphospholipid syndrome: A population-based study. Arthritis Rheumatol. 71:1545–1552. 2019. View Article : Google Scholar : PubMed/NCBI | |
Petri M: Antiphospholipid syndrome. Transl Res. 225:70–81. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cervera R, Serrano R, Pons-Estel GJ, Ceberio-Hualde L, Shoenfeld Y, de Ramón E, Buonaiuto V, Jacobsen S, Zeher MM, Tarr T, et al: Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: A multicentre prospective study of 1000 patients. Ann Rheum Dis. 74:1011–1018. 2015. View Article : Google Scholar : PubMed/NCBI | |
D'Ippolito S, Barbaro G, Paciullo C, Tersigni C, Scambia G and Di Simone N: Antiphospholipid syndrome in pregnancy: New and old pathogenetic mechanisms. Int J Mol Sci. 24:31952023. View Article : Google Scholar : PubMed/NCBI | |
Turrent-Carriles A, Herrera-Félix JP and Amigo MC: Renal involvement in antiphospholipid syndrome. Front Immunol. 9:10082018. View Article : Google Scholar : PubMed/NCBI | |
Abreu MM, Danowski A, Wahl DG, Amigo MC, Tektonidou M, Pacheco MS, Fleming N, Domingues V, Sciascia S, Lyra JO, et al: The relevance of ‘non-criteria’ clinical manifestations of antiphospholipid syndrome: 14th international congress on antiphospholipid antibodies technical task force report on antiphospholipid syndrome clinical features. Autoimmun Rev. 14:401–414. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pignatelli P, Ettorre E, Menichelli D, Pani A, Violi F and Pastori D: Seronegative antiphospholipid syndrome: Refining the value of ‘non-criteria’ antibodies for diagnosis and clinical management. Haematologica. 105:562–572. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, Derksen RH, DE Groot PG, Koike T, Meroni PL, et al: International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 4:295–306. 2006. View Article : Google Scholar : PubMed/NCBI | |
Asherson RA, Cervera R, de Groot PG, Erkan D, Boffa MC, Piette JC, Khamashta MA and Shoenfeld Y; Catastrophic Antiphospholipid Syndrome Registry Project Group, : Catastrophic antiphospholipid syndrome: International consensus statement on classification criteria and treatment guidelines. Lupus. 12:530–534. 2003. View Article : Google Scholar : PubMed/NCBI | |
Auffray C, Sieweke MH and Geissmann F: Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 27:669–692. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ziegler-Heitbrock L: Blood monocytes and their subsets: Established features and open questions. Front Immunol. 6:4232015. View Article : Google Scholar : PubMed/NCBI | |
Kzhyshkowska J, Gudima A, Moganti K, Gratchev A and Orekhov A: Perspectives for monocyte/macrophage-based diagnostics of chronic inflammation. Transfus Med Hemother. 43:66–77. 2016. View Article : Google Scholar : PubMed/NCBI | |
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M and Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 327:656–561. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dash SP, Gupta S and Sarangi PP: Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon. 10:e296862024. View Article : Google Scholar : PubMed/NCBI | |
Cormican S and Griffin MD: Human monocyte subset distinctions and function: Insights from gene expression analysis. Front Immunol. 11:10702020. View Article : Google Scholar : PubMed/NCBI | |
Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, et al: Nomenclature of monocytes and dendritic cells in blood. Blood. 116:e74–e80. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM and Wong SC: The three human monocyte subsets: Implications for health and disease. Immunol Res. 53:41–57. 2012. View Article : Google Scholar : PubMed/NCBI | |
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER and Melgar-Lesmes P: Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol. 14:11960332023. View Article : Google Scholar : PubMed/NCBI | |
Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P and Wong SC: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 118:e16–e31. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C, et al: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 33:375–386. 2010. View Article : Google Scholar : PubMed/NCBI | |
Štok U, Štucin N, Blokar E, Ambrožič A, Sodin-Šemrl S, Čučnik S and Žigon P: Antiphospholipid antibody syndrome-associated increased surface expression of VLA4 integrin on human monocytes. Biomedicines. 10:23412022. View Article : Google Scholar : PubMed/NCBI | |
Mandel J, Casari M, Stepanyan M, Martyanov A and Deppermann C: Beyond hemostasis: Platelet innate immune interactions and thromboinflammation. Int J Mol Sci. 23:38682022. View Article : Google Scholar : PubMed/NCBI | |
Hui H, Fuller KA, Erber WN and Linden MD: Imaging flow cytometry in the assessment of leukocyte-platelet aggregates. Methods. 112:46–54. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gawaz MP, Loftus JC, Bajt ML, Frojmovic MM, Plow EF and Ginsberg MH: Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J Clin Invest. 88:1128–1134. 1991. View Article : Google Scholar : PubMed/NCBI | |
Silverstein RL, Asch AS and Nachman RL: Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J Clin Invest. 84:546–552. 1989. View Article : Google Scholar : PubMed/NCBI | |
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, et al: The role of monocytes in thrombotic diseases: A review. Front Cardiovasc Med. 10:11138272023. View Article : Google Scholar : PubMed/NCBI | |
von Hundelshausen P, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, Ley K and Weber C: RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 103:1772–1777. 2001. View Article : Google Scholar : PubMed/NCBI | |
Moore KL, Stults NL, Diaz S, Smith DF, Cummings RD, Varki A and McEver RP: Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol. 118:445–456. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ivanov II, Apta BHR, Bonna AM and Harper MT: Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep. 9:133972019. View Article : Google Scholar : PubMed/NCBI | |
Purdy M, Obi A, Myers D and Wakefield T: P- and E-selectin in venous thrombosis and non-venous pathologies. J Thromb Haemost. 20:1056–1066. 2022. View Article : Google Scholar : PubMed/NCBI | |
Maugeri N, Brambilla M, Camera M, Carbone A, Tremoli E, Donati MB, de Gaetano G and Cerletti C: Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J Thromb Haemost. 4:1323–1330. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hottz ED, Martins-Gonçalves R, Palhinha L, Azevedo-Quintanilha IG, de Campos MM, Sacramento CQ, Temerozo JR, Soares VC, Dias SSG, Teixeira L, et al: Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Adv. 6:5085–5099. 2022. View Article : Google Scholar : PubMed/NCBI | |
Melgert BN, Spaans F, Borghuis T, Klok PA, Groen B, Bolt A, de Vos P, van Pampus MG, Wong TY, van Goor H, et al: Pregnancy and preeclampsia affect monocyte subsets in humans and rats. PLoS One. 7:e452292012. View Article : Google Scholar : PubMed/NCBI | |
Torchinsky A, Shepshelovich J, Orenstein H, Zaslavsky Z, Savion S, Carp H, Fain A and Toder V: TNF-alpha protects embryos exposed to developmental toxicants. Am J Reprod Immunol. 49:159–168. 2003. View Article : Google Scholar : PubMed/NCBI | |
Piccinni MP, Raghupathy R, Saito S and Szekeres-Bartho J: Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. 12:7178082021. View Article : Google Scholar : PubMed/NCBI | |
Casazza RL, Lazear HM and Miner JJ: Protective and pathogenic effects of interferon signaling during pregnancy. Viral Immunol. 33:3–11. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Tian Y, Zheng L, Luu T and Kwak-Kim J: The update immune-regulatory role of pro- and anti-inflammatory cytokines in recurrent pregnancy losses. Int J Mol Sci. 24:1322022. View Article : Google Scholar : PubMed/NCBI | |
Michimata T, Tsuda H, Sakai M, Fujimura M, Nagata K, Nakamura M and Saito S: Accumulation of CRTH2-positive T-helper 2 and T-cytotoxic 2 cells at implantation sites of human decidua in a prostaglandin D(2)-mediated manner. Mol Hum Reprod. 8:181–187. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mitchell RE, Hassan M, Burton BR, Britton G, Hill EV, Verhagen J and Wraith DC: IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation. Sci Rep. 7:113152017. View Article : Google Scholar : PubMed/NCBI | |
Shi JW, Yang HL, Fan DX, Yang SL, Qiu XM, Wang Y, Lai ZZ, Ha SY, Ruan LY, Shen HH, et al: The role of CXC chemokine ligand 16 in physiological and pathological pregnancies. Am J Reprod Immunol. 83:e132232020. View Article : Google Scholar : PubMed/NCBI | |
Shao Q, Liu X, Huang Y, Chen X and Wang H: Human decidual stromal cells in early pregnancy induce functional re-programming of monocyte-derived dendritic cells via crosstalk between G-CSF and IL-1β. Front Immunol. 11:5742702020. View Article : Google Scholar : PubMed/NCBI | |
Álvarez D, Morales-Prieto DM and Cadavid ÁP: Interaction between endothelial cell-derived extracellular vesicles and monocytes: A potential link between vascular thrombosis and pregnancy-related morbidity in antiphospholipid syndrome. Autoimmun Rev. 22:1032742023. View Article : Google Scholar : PubMed/NCBI | |
Erez O, Romero R, Jung E, Chaemsaithong P, Bosco M, Suksai M, Gallo DM and Gotsch F: Preeclampsia and eclampsia: The conceptual evolution of a syndrome. Am J Obstet Gynecol. 226((2S)): S786–S803. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Zhou H, Wang H, Chen D, Xia L, Wang T and Yan J: Anti-β(2)GPI/β(2)GPI induced TF and TNF-α expression in monocytes involving both TLR4/MyD88 and TLR4/TRIF signaling pathways. Mol Immunol. 53:246–254. 2013. View Article : Google Scholar : PubMed/NCBI | |
Colasanti T, Alessandri C, Capozzi A, Sorice M, Delunardo F, Longo A, Pierdominici M, Conti F, Truglia S, Siracusano A, et al: Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood. 120:3360–3370. 2012. View Article : Google Scholar : PubMed/NCBI | |
Raschi E, Chighizola CB, Grossi C, Ronda N, Gatti R, Meroni PL and Borghi MO: β2-glycoprotein I, lipopolysaccharide and endothelial TLR4: Three players in the two hit theory for anti-phospholipid-mediated thrombosis. J Autoimmun. 55:42–50. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brandt KJ, Fickentscher C, Boehlen F, Kruithof EKO and de Moerloose P: NF-κB is activated from endosomal compartments in antiphospholipid antibodies-treated human monocytes. J Thromb Haemost. 12:779–791. 2014. View Article : Google Scholar : PubMed/NCBI | |
Müller-Calleja N, Köhler A, Siebald B, Canisius A, Orning C, Radsak M, Stein P, Mönnikes R and Lackner KJ: Cofactor-independent antiphospholipid antibodies activate the NLRP3-inflammasome via endosomal NADPH-oxidase: Implications for the antiphospholipid syndrome. Thromb Haemost. 113:1071–1083. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hurst J, Prinz N, Lorenz M, Bauer S, Chapman J, Lackner KJ and von Landenberg P: TLR7 and TLR8 ligands and antiphospholipid antibodies show synergistic effects on the induction of IL-1beta and caspase-1 in monocytes and dendritic cells. Immunobiology. 214:683–691. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tektonidou MG: Cardiovascular disease risk in antiphospholipid syndrome: Thrombo-inflammation and atherothrombosis. J Autoimmun. 128:1028132022. View Article : Google Scholar : PubMed/NCBI | |
Benagiano M, Borghi MO, Romagnoli J, Mahler M, Bella CD, Grassi A, Capitani N, Emmi G, Troilo A, Silvestri E, et al: Interleukin-17/Interleukin-21 and Interferon-γ producing T cells specific for β2 Glycoprotein I in atherosclerosis inflammation of systemic lupus erythematosus patients with antiphospholipid syndrome. Haematologica. 104:2519–2527. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Zhou H, Wang T, Xie Y, Wang T, Wang X and Yan J: Activation of mTOR is involved in anti-β2GPI/β2GPI-induced expression of tissue factor and IL-8 in monocytes. Thromb Res. 157:103–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Niyonzima N, Rahman J, Kunz N, West EE, Freiwald T, Desai JV, Merle NS, Gidon A, Sporsheim B, Lionakis MS, et al: Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci Immunol. 6:eabf24892021. View Article : Google Scholar : PubMed/NCBI | |
Khoy K, Mariotte D, Defer G, Petit G, Toutirais O and Le Mauff B: Natalizumab in multiple sclerosis treatment: from biological effects to immune monitoring. Front Immunol. 11:5498422020. View Article : Google Scholar : PubMed/NCBI | |
Cheng S, Wang H and Zhou H: The role of TLR4 on B cell activation and anti-β2GPI antibody production in the antiphospholipid syndrome. J Immunol Res. 2016:17197202016. View Article : Google Scholar : PubMed/NCBI | |
Chaturvedi S, Brodsky RA and McCrae KR: Complement in the pathophysiology of the antiphospholipid syndrome. Front Immunol. 10:4492019. View Article : Google Scholar : PubMed/NCBI | |
Kiss MG, Papac-Miličević N, Porsch F, Tsiantoulas D, Hendrikx T, Takaoka M, Dinh HQ, Narzt MS, Göderle L, Ozsvár-Kozma M, et al: Cell-autonomous regulation of complement C3 by factor H limits macrophage efferocytosis and exacerbates atherosclerosis. Immunity. 56:1809–1824.e10. 2023. View Article : Google Scholar : PubMed/NCBI | |
Girardi G, Yarilin D, Thurman JM, Holers VM and Salmon JE: Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 203:2165–2175. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Shi JL, Chen M, Zheng ZM, Li MQ and Shao J: CCL2: An important cytokine in normal and pathological pregnancies: A review. Front Immunol. 13:10534572023. View Article : Google Scholar : PubMed/NCBI | |
Shields CA, McCalmon M, Ibrahim T, White DL, Williams JM, LaMarca B and Cornelius DC: Placental ischemia-stimulated T-helper 17 cells induce preeclampsia-associated cytolytic natural killer cells during pregnancy. Am J Physiol Regul Integr Comp Physiol. 315:R336–R343. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Sung N, Gilman-Sachs A and Kwak-Kim J: T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 11:20252020. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Wang M, Liang G, Jin P, Wang P, Xu Y, Qian Y, Jiang X, Qian J and Dong M: Pro-inflammatory signature in decidua of recurrent pregnancy loss regardless of embryonic chromosomal abnormalities. Front Immunol. 12:7727292021. View Article : Google Scholar : PubMed/NCBI | |
Vishnyakova P, Elchaninov A, Fatkhudinov T and Sukhikh G: Role of the monocyte-macrophage system in normal pregnancy and preeclampsia. Int J Mol Sci. 20:36952019. View Article : Google Scholar : PubMed/NCBI | |
Huang SJ, Schatz F, Masch R, Rahman M, Buchwalder L, Niven-Fairchild T, Tang C, Abrahams VM, Krikun G and Lockwood CJ: Regulation of chemokine production in response to pro-inflammatory cytokines in first trimester decidual cells. J Reprod Immunol. 72:60–73. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F, Oveisee M, Jahanara A and Gholizadeh Navashenaq J: The role of atypical chemokine receptor D6 (ACKR2) in physiological and pathological conditions; friend, foe, or both? Front Immunol. 13:8619312022. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Cui S, Zhang L, Yang B, Yuan Y, Lv X, Fu H, Li Y, Huang C and Wang P: Expression of ACKR2 in placentas from different types of preeclampsia. Placenta. 90:121–127. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rybak-Krzyszkowska M, Staniczek J, Kondracka A, Bogusławska J, Kwiatkowski S, Góra T, Strus M and Górczewski W: From biomarkers to the molecular mechanism of preeclampsia-A comprehensive literature review. Int J Mol Sci. 24:132522023. View Article : Google Scholar : PubMed/NCBI | |
Jena MK, Sharma NR, Petitt M, Maulik D and Nayak NR: Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules. 10:9532020. View Article : Google Scholar : PubMed/NCBI | |
Knight JS, Branch DW and Ortel TL: Antiphospholipid syndrome: Advances in diagnosis, pathogenesis, and management. BMJ. 380:e0697172023. View Article : Google Scholar : PubMed/NCBI | |
Alvarez AM, Mulla MJ, Chamley LW, Cadavid AP and Abrahams VM: Aspirin-triggered lipoxin prevents antiphospholipid antibody effects on human trophoblast migration and endothelial cell interactions. Arthritis Rheumatol. 67:488–497. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bruno V, Svensson-Arvelund J, Rubér M, Berg G, Piccione E, Jenmalm MC and Ernerudh J: Effects of low molecular weight heparin on the polarization and cytokine profile of macrophages and T helper cells in vitro. Sci Rep. 8:41662018. View Article : Google Scholar : PubMed/NCBI | |
Saraiva-Mangolin S, Vaz CDO, Ruiz T, Mazetto BM and Orsi FA: Use of hydroxychloroquine to control immune response and hypercoagulability in patients with primary antiphospholipid syndrome. Eur J Intern Med. 90:114–115. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tishler M, Yaron I, Shirazi I and Yaron M: Hydroxychloroquine treatment for primary Sjögren's syndrome: Its effect on salivary and serum inflammatory markers. Ann Rheum Dis. 58:253–256. 1999. View Article : Google Scholar : PubMed/NCBI | |
Miranda S, Billoir P, Damian L, Thiebaut PA, Schapman D, Le Besnerais M, Jouen F, Galas L, Levesque H, Le Cam-Duchez V, et al: Hydroxychloroquine reverses the prothrombotic state in a mouse model of antiphospholipid syndrome: Role of reduced inflammation and endothelial dysfunction. PLoS One. 14:e02126142019. View Article : Google Scholar : PubMed/NCBI | |
Arachchillage DJ, Laffan M and Pericleous C: Hydroxy-chloroquine as an immunomodulatory and antithrombotic treatment in antiphospholipid syndrome. Int J Mol Sci. 24:13312023. View Article : Google Scholar : PubMed/NCBI | |
Müller-Calleja N, Hollerbach A, Häuser F, Canisius A, Orning C and Lackner KJ: Antiphospholipid antibody-induced cellular responses depend on epitope specificity: Implications for treatment of antiphospholipid syndrome. J Thromb Haemost. 15:2367–2376. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hollerbach A, Müller-Calleja N, Canisius A, Orning C and Lackner KJ: Induction of tissue factor expression by anti-β2-glycoprotein I is mediated by tumor necrosis factor α. J Thromb Thrombolysis. 49:228–234. 2020. View Article : Google Scholar : PubMed/NCBI | |
Canaud G, Bienaimé F, Tabarin F, Bataillon G, Seilhean D, Noël LH, Dragon-Durey MA, Snanoudj R, Friedlander G, Halbwachs-Mecarelli L, et al: Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 371:303–312. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cornelius DC, Travis OK, Tramel RW, Borges-Rodriguez M, Baik CH, Greer M, Giachelli CA, Tardo GA and Williams JM: NLRP3 inflammasome inhibition attenuates sepsis-induced platelet activation and prevents multi-organ injury in cecal-ligation puncture. PLoS One. 15:e02340392020. View Article : Google Scholar : PubMed/NCBI | |
Hooftman A, Angiari S, Hester S, Corcoran SE, Runtsch MC, Ling C, Ruzek MC, Slivka PF, McGettrick AF, Banahan K, et al: The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 32:468–478.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen X, Zhang H, Xiao J, Yang C, Chen W, Wei Z, Chen X and Liu J: 4-Octyl itaconate alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting oxidative stress and inflammation. Drug Des Devel Ther. 14:5547–5558. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, et al: Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 381:2497–2505. 2019. View Article : Google Scholar : PubMed/NCBI | |
Perez-Sanchez C, Ruiz-Limon P, Aguirre MA, Bertolaccini ML, Khamashta MA, Rodriguez-Ariza A, Segui P, Collantes-Estevez E, Barbarroja N, Khraiwesh H, et al: Mitochondrial dysfunction in antiphospholipid syndrome: Implications in the pathogenesis of the disease and effects of coenzyme Q(10) treatment. Blood. 119:5859–5870. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Sánchez C, Aguirre MÁ, Ruiz-Limón P, Ábalos-Aguilera MC, Jiménez-Gómez Y, Arias-de la Rosa I, Rodriguez-Ariza A, Fernández-Del Río L, González-Reyes JA, Segui P, et al: Ubiquinol effects on antiphospholipid syndrome prothrombotic profile: A randomized, placebo-controlled trial. Arterioscler Thromb Vasc Biol. 37:1923–1932. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alijotas-Reig J, Esteve-Valverde E, Llurba E and Gris JM: Treatment of refractory poor aPL-related obstetric outcomes with TNF-alpha blockers: Maternal-fetal outcomes in a series of 18 cases. Semin Arthritis Rheum. 49:314–318. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sachetto ATA, Archibald SJ, Perkins M, Zhang G, Zhang Y, Ye D, Grover SP, Wu C, Li Z and Mackman N: Pathways regulating the levels of tissue factor-positive extracellular vesicles and activation of coagulation in endotoxemic mice. J Thromb Haemost. 23:2422–2435. 2025. View Article : Google Scholar : PubMed/NCBI | |
Mantle D and Hargreaves IP: Coenzyme Q10 and autoimmune disorders: An overview. Int J Mol Sci. 25:45762024. View Article : Google Scholar : PubMed/NCBI |