
Angiotensin‑converting enzyme 2 expression in human tumors: Implications for prognosis and therapy (Review)
- Authors:
- Theodoros Rizopoulos
- Martha Assimakopoulou
-
Affiliations: Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, 26504 Patras, Greece - Published online on: June 25, 2025 https://doi.org/10.3892/or.2025.8934
- Article Number: 101
-
Copyright: © Rizopoulos et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A and Li F: Structural basis of receptor recognition by SARS-CoV-2. Nature. 581:221–224. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, et al: Extrapulmonary manifestations of COVID-19. Nat Med. 26:1017–1032. 2020. View Article : Google Scholar : PubMed/NCBI | |
Danilczyk U, Eriksson U, Crackower MA and Penninger JM: A story of two ACEs. J Mol Med (Berl). 81:227–234. 2003. View Article : Google Scholar : PubMed/NCBI | |
Santos RA, Campagnole-Santos MJ and Andrade SP: Angiotensin-(1–7): An update. Regul Pept. 91:45–62. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ferrario CM, Trask AJ and Jessup JA: Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol. 289:H2281–2290. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Macdonald-Dunlop E, Chen J, Zhai R, Li T, Richmond A, Klarić L, Pirastu N, Ning Z, Zheng C, et al: Genetic landscape of the ACE2 coronavirus receptor. Circulation. 145:1398–1411. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G and van Goor H: The emerging role of ACE2 in physiology and disease. J Pathol. 12:1–11. 2007. View Article : Google Scholar | |
Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, et al: Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 417:822–828. 2002. View Article : Google Scholar : PubMed/NCBI | |
Donoghue M, Wakimoto H, Maguire CT, Acton S, Hales P, Stagliano N, Fairchild-Huntress V, Xu J, Lorenz JN, Kadambi V, et al: Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol. 35:1043–1053. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen QL, Li JQ, Xiang ZD, Lang Y, Guo GJ and Liu ZH: Localization of cell receptor-related genes of SARS-CoV-2 in the kidney through single-cell transcriptome analysis. Kidney Dis (Basel). 6:258–270. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lely AT, Hamming I, van Goor H and Navis GJ: Renal ACE2 expression in human kidney disease. J Pathol. 204:587–593. 2004. View Article : Google Scholar : PubMed/NCBI | |
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, et al: Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 436:112–116. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X, Chen H, Peng J and Fu J: Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 47:4383–4392. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meiners J, Jansen K, Gorbokon N, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Höflmayer D, Weidemann S, Fraune C, et al: Angiotensin-converting enzyme 2 protein is overexpressed in a wide range of human tumour types: A systematic tissue microarray study on >15,000 tumours. Biomedicines. 9:18312021. View Article : Google Scholar : PubMed/NCBI | |
Mahalingam R, Dharmalingam P, Santhanam A, Kotla S, Davuluri G, Karmouty-Quintana H, Ashrith G and Thandavarayan RA: Single-cell RNA sequencing analysis of SARS-CoV-2 entry receptors in human organoids. J Cell Physiol. 236:2950–2958. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M and Lindskog C: The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 16:e96102020. View Article : Google Scholar : PubMed/NCBI | |
Han T, Kang J, Li G, Ge J and Gu J: Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study. Ann Transl Med. 8:10772020. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Chen F, Gao J, Lei M, Wang D, Jin X, Guo Y, Shan L and Chen X: Comprehensive landscape of the renin-angiotensin system in Pan-cancer: A potential downstream mediated mechanism of SARS-CoV-2. Int J Biol Sci. 7:3795–3817. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song J, Han J, Liu F, Chen X, Qian S, Wang Y, Jia Z, Duan X, Zhang X and Zhu J: Systematic analysis of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignant tumors: Pan-cancer analysis. Front Mol Biosci. 7:5694142020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Han X and Shi Y: Comparative analysis of SARS-CoV-2 receptor ACE2 expression in multiple solid tumors and matched non-diseased tissues. Infect Genet Evol. 85:1044282020. View Article : Google Scholar : PubMed/NCBI | |
Li MY, Li L, Zhang Y and Wang XS: Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 9:452020. View Article : Google Scholar : PubMed/NCBI | |
Qi J, Zhou Y, Hua J, Zhang L, Bian J, Liu B, Zhao Z and Jin S: The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 infection. Int J Environ Res Public Health. 18:2842021. View Article : Google Scholar : PubMed/NCBI | |
Qi F, Qian S, Zhang S and Zhang Z: Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 526:135–140. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li S, Han J, Zhang A, Han Y, Chen M, Liu Z, Shao M and Cao W: Exploring the demographics and clinical characteristics related to the expression of angiotensin-converting enzyme 2, a receptor of SARS-CoV-2. Front Med (Lausanne). 7:5302020. View Article : Google Scholar : PubMed/NCBI | |
Viveiros A, Gheblawi M, Aujla PK, Sosnowski DK, Seubert JM, Kassiri Z and Oudit GY: Sex- and age-specific regulation of ACE2: Insights into severe COVID-19 susceptibility. J Mol Cell Cardiol. 164:13–16. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schurink B, Roos E, Vos W, Breur M, van der Valk P and Bugiani M: ACE2 protein expression during childhood, adolescence, and early adulthood. Pediatr Dev Pathol. 25:404–408. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ravaioli S, Tebaldi M, Fonzi E, Angeli D, Mazza M, Nicolini F, Lucchesi A, Fanini F, Pirini F, Tumedei MM, et al: ACE2 and TMPRSS2 potential involvement in genetic susceptibility to SARS-COV-2 in cancer patients. Cell Transplant. 29:09636897209687492020. View Article : Google Scholar : PubMed/NCBI | |
Chakladar J, Shende N, Li WT, Rajasekaran M, Chang EY and Ongkeko WM: Smoking-mediated upregulation of the androgen pathway leads to increased SARS-CoV-2 susceptibility. Int J Mol Sci. 21:36272020. View Article : Google Scholar : PubMed/NCBI | |
Goren A, Wambier CG, Herrera S, McCoy J, Vaño-Galván S, Gioia F, Comeche B, Ron R, Serrano-Villar S, Ramos PM, et al: Anti-androgens may protect against severe COVID-19 outcomes: Results from a prospective cohort study of 77 hospitalized men. J Eur Acad Dermatol Venereol. 35:e13–e15. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bhardwaj V, Dela Cruz M, Subramanyam D, Kumar R, Markan S, Parker B and Roy HK: Exercise-induced myokines downregulates the ACE2 level in bronchial epithelial cells: Implications for SARS-CoV-2 prevention. PLoS One. 17:e02713032022. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Huang QF, Zhang Z, Dong Y, Xu H, Cao Y, Sheng CS, Li Y, Wang C, Wang X and Wang JG: Angiotensin-converting enzyme 2 in human plasma and lung tissue. Blood Press. 32:6–15. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rao S, Lau A and So HC: Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care. 43:1416–1426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Facchiano A, Facchiano F and Facchiano A: An investigation into the molecular basis of cancer comorbidities in coronavirus infection. FEBS Open Bio. 10:2363–2374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB and Oudit GY: Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 126:1456–1474. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, Dorscheid DR and Sin DD: ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur Respir J. 55:20006882020. View Article : Google Scholar : PubMed/NCBI | |
Kornilov SA, Lucas I, Jade K, Dai CL, Lovejoy JC and Magis AT: Plasma levels of soluble ACE2are associated with sex, Metabolic Syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Crit Care. 24:4522020. View Article : Google Scholar : PubMed/NCBI | |
Chirinos JA, Cohen JB, Zhao L, Hanff T, Sweitzer N, Fang J, Corrales-Medina V, Anmar R, Morley M, Zamani P, et al: Clinical and proteomic correlates of plasma ACE2 (Angiotensin-Converting Enzyme 2) in human heart failure. Hypertension. 76:1526–1536. 2020. View Article : Google Scholar : PubMed/NCBI | |
Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, et al: Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 75:2829–2845. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dhawale VS, Amara VR, Karpe PA, Malek V, Patel D and Tikoo K: Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model. Toxicol Appl Pharmacol. 306:17–26. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ye R and Liu Z: ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol. 113:1043502020. View Article : Google Scholar : PubMed/NCBI | |
Clarke NE, Belyaev ND, Lambert DW and Turner AJ: Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin Sci (Lond). 126:507–516. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Xu Q, Ma L, Wu D, Gao J, Chen G and Li H: Systematic profiling of ACE2 expression in diverse physiological and pathological conditions for COVID-19/SARS-CoV-2. J Cell Mol Med. 24:9478–9482. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feng H, Wei X, Pang L, Wu Y, Hu B, Ruan Y, Liu Z, Liu J and Wang T: Prognostic and immunological value of angiotensin-converting enzyme 2 in pan-cancer. Front Mol Biosci. 7:1892020. View Article : Google Scholar : PubMed/NCBI | |
Chai P, Yu J, Ge S, Jia R and Fan X: Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: A pan-cancer analysis. J Hematol Oncol. 13:432020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Xie L, Chen L, Zhang L, Han Y, Yan Z and Guo X: Genomic, epigenomic, and immune subtype analysis of CTSL/B and SARS-CoV-2 receptor ACE2 in pan-cancer. Aging. 12:22370–22389. 2020.PubMed/NCBI | |
Zhao K, Zhang D, Xu X, Wang S, Liu Z, Ren X, Zhang X, Lu Z, Ren S and Qin C: Exploring the potential mechanisms of impairment on genitourinary system associated with coronavirus disease 2019 infection: Bioinformatics and molecular simulation analyses. Asian J Urol. 10:344–355. 2023. View Article : Google Scholar : PubMed/NCBI | |
He J, Yang X and Wang H: Construction of a risk map to understand the vulnerability of various types of cancer patients to COVID-19 infection. MedComm (2020). 2:69–81. 2021. View Article : Google Scholar : PubMed/NCBI | |
de Paula Gonzaga ALAC, Palmeira VA, Ribeiro TFS, Costa LB, de Sá, Rodrigues KE and Simões-E-Silva AC: ACE2/Angiotensin-(1–7)/Mas receptor axis in human cancer: Potential role for pediatric tumors. Curr Drug Targets. 21:892–901. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Fan J, Wu F, Huang Q, Guo M, Lv Z, Han J, Duan L, Hu G, Chen L, et al: The ACE2/Angiotensin-(1–7)/Mas receptor axis: Pleiotropic roles in cancer. Front Physiol. 8:2762017. View Article : Google Scholar : PubMed/NCBI | |
Bujak-Gizycka B, Madej J, Bystrowska B, Toton-Zuranska J, Kus K, Kolton-Wroz M, Jawien J and Olszanecki R: Angiotensin 1–7 formation in breast tissue is attenuated in breast cancer-a study on the metabolism of angiotensinogen in breast cancer cell lines. J Physiol Pharmacol. 702019.doi: 10.26402/jpp.2019.4.02. | |
Bernardi S, Zennaro C, Palmisano S, Velkoska E, Sabato N, Toffoli B, Giacomel G, Buri L, Zanconati F, Bellini G, et al: Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma. J Renin Angiotensin Aldosterone Syst. 13:202–209. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Li L, Li M and Wang X: The SARS-CoV-2 host cell receptor ACE2 correlates positively with immunotherapy response and is a potential protective factor for cancer progression. Comput Struct Biotechnol J. 18:2438–2444. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song T, Choi CH, Kim MK, Kim ML, Yun BS and Seong SJ: The effect of angiotensin system inhibitors (angiotensin-converting enzyme inhibitors or angiotensin receptor blockers) on cancer recurrence and survival: A meta-analysis. Eur J Cancer Prev. 26:78–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harmer D, Gilbert M, Borman R and Clark KL: Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 532:107–110. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Wang K, Yu J, Howard D, French L, Chen Z, Wen C and Xu Z: The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol. 11:5730952021. View Article : Google Scholar : PubMed/NCBI | |
Xia H and Lazartigues E: Angiotensin-converting enzyme 2 in the brain: Properties and future directions. J Neurochem. 107:1482–1494. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kase Y and Okano H: Expression of ACE2 and a viral virulence-regulating factor CCN family member 1 in human iPSC-derived neural cells: Implications for COVID-19-related CNS disorders. Inflamm Regen. 40:322020. View Article : Google Scholar : PubMed/NCBI | |
Lukiw WJ, Pogue A and Hill JM: SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol. 42:217–224. 2022. View Article : Google Scholar : PubMed/NCBI | |
Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL and Lazartigues E: Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 292:R373–R381. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen A, Zhao W, Li X, Sun G, Ma Z, Peng L, Shi Z, Li X and Yan J: Comprehensive oncogenic features of coronavirus receptors in glioblastoma multiforme. Front Immunol. 13:8407852022. View Article : Google Scholar : PubMed/NCBI | |
Ren X, Wang S, Chen X, Wei X, Li G, Ren S, Zhang T, Zhang X, Lu Z, You Z, et al: Multiple expression assessments of ACE2 and TMPRSS2 SARS-CoV-2 entry molecules in the urinary tract and their associations with clinical manifestations of COVID-19. Infect Drug Resist. 13:3977–3990. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004. View Article : Google Scholar : PubMed/NCBI | |
Muhl L, He L, Sun Y, Andaloussi Mäe M, Pietilä R, Liu J, Genové G, Zhang L, Xie Y, Leptidis S, et al: The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research. Stem Cell Reports. 17:1089–1104. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, Penchikala M, Xia H, Lazartigues E, Zhao B and Chen Y: Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 79:550–558. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qiao J, Li W, Bao J, Peng Q, Wen D, Wang J and Sun B: The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem Biophys Res Commun. 533:867–871. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bielarz V, Willemart K, Avalosse N, De Swert K, Lotfi R, Lejeune N, Poulain F, Ninanne N, Gilloteaux J, Gillet N and Nicaise C: Susceptibility of neuroblastoma and glioblastoma cell lines to SARS-CoV-2 infection. Brain Res. 1758:1473442021. View Article : Google Scholar : PubMed/NCBI | |
Vanhulle E, Stroobants J, Provinciael B, Camps A, Noppen S, Maes P and Vermeire K: SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening. Antiviral Res. 203:1053422022. View Article : Google Scholar : PubMed/NCBI | |
Bergsneider B, Bailey E, Ahmed Y, Gogineni N, Huntley D and Montano X: Analysis of SARS-CoV-2 infection associated cell entry proteins ACE2, CD147, PPIA, and PPIB in datasets from non SARS-CoV-2 infected neuroblastoma patients, as potential prognostic and infection biomarkers in neuroblastoma. Biochem Biophys Rep. 27:1010812021.PubMed/NCBI | |
Kim K, Ko Y, Ko DS and Kim YH: Prognostic significance of COVID-19 receptor ACE2 and recommendation for antihypertensive drug in renal cell carcinoma. Biomed Res Int. 2020:20543762020. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Wang W, Wang H, Zou Q, Hu B, Ye L, Hu Y, Xie Y, Huang N, Lan Q, et al: Single-cell sequencing of glioblastoma reveals central nervous system susceptibility to SARS-CoV-2. Front Oncol. 10:5665992020. View Article : Google Scholar : PubMed/NCBI | |
Lei J, Liu Y, Xie T, Yao G, Wang G, Diao B and Song J: Evidence for residual SARS-CoV-2 in glioblastoma tissue of a convalescent patient. Neuroreport. 32:771–775. 2021. View Article : Google Scholar : PubMed/NCBI | |
Suarez-Meade P, Watanabe F, Ruiz-Garcia H, Rafferty SB, Moniz-Garcia D, Schiapparelli PV, Jentoft ME, Imitola J and Quinones-Hinojosa A: SARS-CoV2 entry factors are expressed in primary human glioblastoma and recapitulated in cerebral organoid models. Neurooncol. 161:67–76. 2023. View Article : Google Scholar : PubMed/NCBI | |
Parolin M, Parisotto M, Zanchetta F, Sartorato P and De Menis E: Coronaviruses and endocrine system: A systematic review on evidences and shadows. Endocr Metab Immune Disord Drug Targets. 21:1242–1251. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu WT, Zhou F, Xie WQ, Wang S, Yao H, Liu YT, Gao L and Wu ZB: A potential impact of SARS-CoV-2 on pituitary glands and pituitary neuroendocrine tumors. Endocrine. 72:340–348. 2021. View Article : Google Scholar : PubMed/NCBI | |
Narayan SS, Lorenz K, Ukkat J, Hoang-Vu C and Trojanowicz B: Angiotensin converting enzymes ACE and ACE2 in thyroid cancer progression. Neoplasma. 67:402–409. 2020. View Article : Google Scholar : PubMed/NCBI | |
An X, Lin W, Liu H, Zhong W, Zhang X, Zhu Y, Wang X, Li J and Sheng Q: SARS-CoV-2 host receptor ACE2 protein expression atlas in human gastrointestinal tract. Front Cell Dev Biol. 9:6598092021. View Article : Google Scholar : PubMed/NCBI | |
Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, Jiang S, Demeter J, Bevacqua RJ, Chang CA, et al: SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 33:1565–1576.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, Weil T, Koepke L, Bozzo CP, Read C, et al: SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 3:149–165. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fignani D, Licata G, Brusco N, Nigi L, Grieco GE, Marselli L, Overbergh L, Gysemans C, Colli ML, Marchetti P, et al: SARS-CoV-2 receptor angiotensin I-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-cells and in the human pancreas microvasculature. Front Endocrinol (Lausanne). 11:5968982020. View Article : Google Scholar : PubMed/NCBI | |
Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, Tang X, Candelario-Jalil E, Yang C, Nick H, et al: Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell Metab. 32:1041–1051.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Coate KC, Cha J, Shrestha S, Wang W, Gonçalves LM, Almaça J, Kapp ME, Fasolino M, Morgan A, Dai C, et al: ARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells. Cell Metab. 32:1028–1040.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Steenblock C, Richter S, Berger I, Barovic M, Schmid J, Schubert U, Jarzebska N, von Mässenhausen A, Linkermann A, Schürmann A, et al: Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun. 12:35342021. View Article : Google Scholar : PubMed/NCBI | |
Qadir MMF, Bhondeley M, Beatty W, Gaupp DD, Doyle-Meyers LA, Fischer T, Bandyopadhyay I, Blair RV, Bohm R, Rappaport J, et al: SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight. 6:e1515512021. View Article : Google Scholar : PubMed/NCBI | |
Pedersen KB, Chhabra KH, Nguyen VK, Xia H and Lazartigues E: The transcription factor HNF1α induces expression of angiotensin-converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs. Biochim Biophys Acta. 1829:1225–1235. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Zhang R, Yao W, Wang J, Qian A, Qiao M, Zhang Y and Yuan Y: Decreased expression of angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression. Tohoku J Exp Med. 217:123–131. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang X, He C, Hua X, Kan A, Sun S, Wang J and Li S: Bioinformatic analysis of correlation between immune infiltration and COVID-19 in cancer patients. Int J Biol Sci. 16:2464–2476. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Zhang R, Zhang L, Yao W, Li J and Yuan Y: Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy. Cancer Lett. 307:18–25. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lau ST and Leung PS: Role of the RAS in pancreatic cancer. Curr Cancer Drug Targets. 11:412–420. 2011. View Article : Google Scholar : PubMed/NCBI | |
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, et al: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 87:E1–E9. 2000. View Article : Google Scholar : PubMed/NCBI | |
Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, et al: Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J. 26:369–375. 2005. View Article : Google Scholar : PubMed/NCBI | |
Patel VB, Zhong JC, Grant MB and Oudit GY: Role of the ACE2/Angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ Res. 118:1313–1326. 2016. View Article : Google Scholar : PubMed/NCBI | |
Basu R, Poglitsch M, Yogasundaram H, Thomas J, Rowe BH and Oudit GY: Roles of angiotensin peptides and recombinant human ACE2 in heart failure. J Am Coll Cardiol. 69:805–819. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen M, Hu M, Fedak PWM, Oudit GY and Kassiri Z: Cell-specific functions of ADAM17 regulate the progression of thoracic aortic aneurysm. Circ Res. 123:372–388. 2018. View Article : Google Scholar : PubMed/NCBI | |
Epelman S, Tang WH, Chen SY, Van Lente F, Francis GS and Sen S: Detection of soluble angiotensin-converting enzyme 2 in heart failure: Insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol. 52:750–754. 2008. View Article : Google Scholar : PubMed/NCBI | |
Madjid M, Safavi-Naeini P, Solomon SD and Vardeny O: Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 5:831–840. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV III, Kwon DH, Singh T, Tilton JC, Tsai EJ, et al: COVID-19 and cardiovascular disease: From bench to bedside. Circ Res. 128:1214–1236. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brumback BD, Dmytrenko O, Robinson AN, Bailey AL, Ma P, Liu J, Hicks SC, Ng S, Li G, Zhang DM, et al: Human cardiac pericytes are susceptible to SARS-CoV-2 infection. JACC Basic Transl Sci. 8:109–120. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zou X, Chen K, Zou J, Han P, Hao J and Han Z: Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 14:185–192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Huang Y, Song X, Guo X, Pang J, Wang J, Zhang S and Wang C: Single-cell transcriptional profile of ACE2 in healthy and failing human hearts. Sci China Life Sci. 64:652–655. 2021. View Article : Google Scholar : PubMed/NCBI | |
Klingenstein M, Klingenstein S, Neckel PH, Mack AF, Wagner AP, Kleger A, Liebau S and Milazzo A: Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. Cells Tissues Organs. 209:155–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deprez M, Zaragosi LE, Truchi M, Becavin C, Ruiz García S, Arguel MJ, Plaisant M, Magnone V, Lebrigand K, Abelanet S, et al: A Single-cell atlas of the human healthy airways. Am J Respir Crit Care Med. 202:1636–1645. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, et al: HCA lung biological network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 26:681–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee IT, Nakayama T, Wu CT, Goltsev Y, Jiang S, Gall PA, Liao CK, Shih LC, Schürch CM, McIlwain DR, et al: ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat Commun. 11:54532020. View Article : Google Scholar : PubMed/NCBI | |
Bilinska K, Jakubowska P, Von Bartheld CS and Butowt R: Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem Neurosci. 11:1555–1562. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T and Chen Q: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 12:82020. View Article : Google Scholar : PubMed/NCBI | |
Sapkota D, Sharma S, Søland TM, Braz-Silva PH and Teh MT: Expression profile of SARS-CoV-2 cellular entry proteins in normal oral mucosa and oral squamous cell carcinoma. Clin Exp Dent Res. 8:117–122. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sivasakthivel S, Ramani P and Poothakulath Krishnan R: Systematic review and Meta-analysis on angiotensin converting enzyme 2 in head and neck region. Cureus. 15:e336732023.PubMed/NCBI | |
de Carvalho Fraga CA, Farias LC, Jones KM, Batista de Paula AM and Guimaraes ALS: Angiotensin-converting enzymes (ACE and ACE2) as potential targets for malignant epithelial neoplasia: Review and bioinformatics analyses focused in oral squamous cell carcinoma. Protein Pept Lett. 24:784–792. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hinsley EE, de Oliveira CE, Hunt S, Coletta RD and Lambert DW: Angiotensin 1–7 inhibits angiotensin II-stimulated head and neck cancer progression. Eur J Oral Sci. 125:247–257. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin YT, Wang HC, Chuang HC, Hsu YC, Yang MY and Chien CY: Pre-treatment with angiotensin-(1–7) inhibits tumor growth via autophagy by downregulating PI3K/Akt/mTOR signaling in human nasopharyngeal carcinoma xenografts. J Mol Med (Berl). 96:1407–1418. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pei N, Wan R, Chen X, Li A, Zhang Y, Li J, Du H, Chen B, Wei W, Qi Y, et al: Angiotensin-(1–7) decreases cell growth and angiogenesis of human nasopharyngeal carcinoma xenografts. Mol Cancer Ther. 15:37–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fountzilas E, Kotoula V, Angouridakis N, Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K, Nikolaou A, Pectasides D and Fountzilas G: Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS One. 8:e704292013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y and Zuo W: Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 202:756–759. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ciechanowicz AK, Lay WX, Prado Paulino J, Suchocki E, Leszczak S, Leszczak C and Kucia M: Angiotensin 1–7 stimulates proliferation of lung bronchoalveolar progenitors-implications for SARS-CoV-2 infection. Cells. 11:21022022. View Article : Google Scholar : PubMed/NCBI | |
Salahudeen AA, Choi SS, Rustagi A, Zhu J, van Unen V, de la O SM, Flynn RA, Margalef-Català M, Santos AJM, Ju J, et al: Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature. 588:670–675. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sidarta-Oliveira D, Jara CP, Ferruzzi AJ, Skaf MS, Velander WH, Araujo EP and Velloso LA: SARS-CoV-2 receptor is co-expressed with elements of the kinin-kallikrein, renin-angiotensin and coagulation systems in alveolar cells. Sci Rep. 10:195222020. View Article : Google Scholar : PubMed/NCBI | |
Qiao Y, Wang XM, Mannan R, Pitchiaya S, Zhang Y, Wotring JW, Xiao L, Robinson DR, Wu YM, Tien JC, et al: Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. Proc Natl Acad Sci USA. 118:e20214501182020. View Article : Google Scholar : PubMed/NCBI | |
Liu A, Zhang X, Li R, Zheng M, Yang S, Dai L, Wu A, Hu C, Huang Y, Xie M and Chen Q: Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol. 253:17–30. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cai G: Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2. medRxiv. Feb 28–2020.doi: 10.1101/2020.02.05.20020107. | |
Cai G, Bosse Y, Xiao F, Kheradmand F and Amos CI: Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 201:1557–1559. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M, Veith C, Boots AW, et al: SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39:e1051142020. View Article : Google Scholar : PubMed/NCBI | |
Voinsky I and Gurwitz D: Smoking and COVID-19: Similar bronchial ACE2 and TMPRSS2 expression and higher TMPRSS4 expression in current versus never smokers. Drug Dev Res. 81:1073–1080. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Matsuda A, Budinger GRS, Sporn PHS and Casalino-Matsuda SM: Hypercapnia increases ACE2 expression and pseudo–SARS–CoV–2 entry in bronchial epithelial cells by augmenting cellular cholesterol. Front Immunol. 14:12511202023. View Article : Google Scholar : PubMed/NCBI | |
Ilikci Sagkan R and Akin-Bali DF: Structural variations and expression profiles of the SARS-CoV-2 host invasion genes in lung cancer. J Med Virol. 92:2637–2647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Quek K, Chen R, Chen J and Chen B: Expression of the SAR2-Cov-2 receptor ACE2 reveals the susceptibility of COVID-19 in non-small cell lung cancer. J Cancer. 11:5289–5292. 2020. View Article : Google Scholar : PubMed/NCBI | |
Subbarayan K, Ulagappan K, Wickenhauser C and Seliger B: xpression and Clinical Significance of SARS-CoV-2 human targets in neoplastic and non-neoplastic lung tissues. Curr Cancer Drug Targets. 21:428–442. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li L, Qu T, Li J, Wu L, Li K, Wang Z, Zhu M, Huang B, Wu W, et al: High expression of ACE2 and TMPRSS2 at the resection margin makes lung cancer survivors susceptible to SARS-CoV-2 with unfavorable prognosis. Front Oncol. 11:6445752021. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Gu X, Li Z, Shan S, Wu F and Ren T: Heterogeneous expression of ACE2, TMPRSS2, and FURIN at single-cell resolution in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 149:3563–3573. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hoang T, Nguyen TQ and Tran TTA: Genetic susceptibility of ACE2 and TMPRSS2 in six common cancers and possible impacts on COVID-19. Cancer Res Treat. 53:650–656. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kong Q, Xiang Z, Wu Y, Gu Y, Guo J and Geng F: Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection. Mol Cancer. 19:802020. View Article : Google Scholar : PubMed/NCBI | |
He C, Hua X, Sun S, Li S, Wang J and Huang X: Integrated bioinformatic analysis of SARS-CoV-2 infection related genes ACE2, BSG and TMPRSS2 in aerodigestive cancers. J Inflamm Res. 14:791–802. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hayashi T, Sano K and Konishi I: Possibility of SARS-CoV-2 infection in the metastatic microenvironment of cancer. Curr Issues Mol Biol. 44:233–241. 2022. View Article : Google Scholar : PubMed/NCBI | |
Samad A, Jafar T and Rafi JH: Identification of angiotensin-converting enzyme 2 (ACE2) protein as the potential biomarker in SARS-CoV-2 infection-related lung cancer using computational analyses. Genomics. 112:4912–4923. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lazar V, Raynaud J, Magidi S, Bresson C, Martini JF, Galbraith S, Wunder F, Onn A, Batist G, Girard N, et al: Comorbidity between lung cancer and COVID-19 pneumonia: Role of immunoregulatory gene transcripts in high ACE2-expressing normal lung. Ther Adv Med Oncol. 14:175883592211338932022. View Article : Google Scholar : PubMed/NCBI | |
Dai YJ, Hu F, Li H, Huang HY, Wang DW and Liang Y: A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection. Ann Transl Med. 8:4812020. View Article : Google Scholar : PubMed/NCBI | |
Deben C, Le Compte M, Siozopoulou V, Lambrechts H, Hermans C, Lau HW, Huizing M, Lamote K, Hendriks JMH, Van Dam P, et al: Expression of SARS-CoV-2-Related surface proteins in non-small-cell lung cancer patients and the influence of standard of care therapy. Cancers (Basel). 14:40742022. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M, Hirai S, Sumi T, Tanaka Y, Tada M, Nishii Y, Hasegawa T, Uchida H, Yamada G, Watanabe A, et al: Angiotensin-converting enzyme 2 is a potential therapeutic target for EGFR-mutant lung adenocarcinoma. Biochem Biophys Res Commun. 487:613–618. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Wan H, Liu J, Zhang R, Ma Q, Han B, Xiang Y, Che J, Cao H, Fei X and Qiu W: The angiotensin-converting enzyme 2 in tumor growth and tumor-associated angiogenesis in non-small cell lung cancer. Oncol Rep. 23:941–948. 2010.PubMed/NCBI | |
Teng JP, Yang ZY, Zhu YM, Ni D, Zhu ZJ and Li XQ: Gemcitabine and cisplatin for treatment of lung cancer in vitro and vivo. Eur Rev Med Pharmacol Sci. 22:3819–3825. 2018.PubMed/NCBI | |
Cheng Q, Zhou L, Zhou J, Wan H, Li Q and Feng Y: ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC. Oncol Rep. 36:1403–1410. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Ni L, Wan H, Fan L, Fei X, Ma Q, Gao B, Xiang Y, Che J and Li Q: Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol Rep. 26:1157–1164. 2011.PubMed/NCBI | |
Qian YR, Guo Y, Wan HY, Fan L, Feng Y, Ni L, Xiang Y and Li QY: Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep. 29:2408–2414. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wilop S, von Hobe S, Crysandt M, Esser A, Osieka R and Jost E: Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol. 135:1429–1435. 2009. View Article : Google Scholar : PubMed/NCBI | |
Menon J, Soto-Pantoja DR, Callahan MF, Cline JM, Ferrario CM, Tallant EA and Gallagher PE: Angiotensin-(1–7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res. 67:2809–2815. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hicks BM, Filion KB, Yin H, Sakr L, Udell JA and Azoulay L: Angiotensin converting enzyme inhibitors and risk of lung cancer: Population based cohort study. BMJ. 363:k42092018. View Article : Google Scholar : PubMed/NCBI | |
Sheinin M, Jeong B, Paidi RK and Pahan K: Regression of lung cancer in mice by intranasal administration of SARS-CoV-2 spike S1. Cancers (Basel). 14:56482022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhou C and Hu W: Association between serum angiotensin-converting enzyme 2 level with postoperative morbidity and mortality after major pulmonary resection in non-small cell lung cancer patients. Heart Lung Circ. 23:661–666. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Chen L, Shen J, Mei X, Yao J, Chen T and Zhou Y: The potential role of abnormal angiotensin-converting enzyme 2 expression correlated with immune infiltration after SARS-CoV-2 infection in the prognosis of breast cancer. Aging. 13:20886–20895. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mei J, Cai Y, Xu R, Yu X, Han X, Weng M, Chen L, Ma T, Gao T, Gao F, et al: Angiotensin-converting enzyme 2 identifies immune-hot tumors suggesting angiotensin-(1–7) as a sensitizer for chemotherapy and immunotherapy in breast cancer. Biol Proced Online. 24:152022. View Article : Google Scholar : PubMed/NCBI | |
Zuo X, Ren S, Zhang H, Tian J, Tian R, Han B, Liu H, Dong Q, Wang Z, Cui Y, et al: Chemotherapy induces ACE2 expression in breast cancer via the ROS-AKT-HIF-1α signaling pathway: A potential prognostic marker for breast cancer patients receiving chemotherapy. J Transl Med. 20:5092022. View Article : Google Scholar : PubMed/NCBI | |
Ling J, Peng N and Luo L: ACE2 maybe serve as a prognostic biomarker in breast invasive carcinoma. J Clin Lab Anal. 36:e243622022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J and Lin Y: ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 38:1732019. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, Meng X and Zou F: Downregulation of ACE2/Ang-(1–7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 376:268–277. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nair MG, Prabhu JS and Ts S: High expression of ACE2 in HER2 subtype of breast cancer is a marker of poor prognosis. Cancer Treat Res Commun. 27:1003212021. View Article : Google Scholar : PubMed/NCBI | |
Nowak JK, Lindstrøm JC, Kalla R, Ricanek P, Halfvarson J and Satsangi J: Age, inflammation, and disease location are critical determinants of intestinal expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in inflammatory bowel disease. Gastroenterology. 159:1151–1154. 2020. View Article : Google Scholar : PubMed/NCBI | |
Verstockt B, Verstockt S, Abdu Rahiman S, Ke BJ, Arnauts K, Cleynen I, Sabino J, Ferrante M, Matteoli G and Vermeire S: Intestinal receptor of SARS-CoV-2 in Inflamed IBD tissue seems downregulated by HNF4A in ileum and upregulated by interferon regulating factors in colon. J Crohns Colitis. 15:485–498. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brandão TB, Gueiros LA, Melo TS, Prado-Ribeiro AC, Nesrallah ACFA, Prado GVB, Santos-Silva AR and Migliorati CA: Oral lesions in patients with SARS-CoV-2 infection: Could the oral cavity be a target organ? Oral Surg Oral Med Oral Pathol Oral Radiol. 31:45–51. 2021. View Article : Google Scholar | |
Xu J, Chu M, Zhong F, Tan X, Tang G, Mai J, Lai N, Guan C, Liang Y and Liao G: Digestive symptoms of COVID-19 and expression of ACE2 in digestive tract organs. Cell Death Discov. 6:762020. View Article : Google Scholar : PubMed/NCBI | |
Desquilles L, Cano L, Ghukasyan G, Mouchet N, Landreau C, Corlu A, Clément B, Turlin B, Désert R and Musso O: Well-differentiated liver cancers reveal the potential link between ACE2 dysfunction and metabolic breakdown. Sci Rep. 12:18592022. View Article : Google Scholar : PubMed/NCBI | |
Stevens JP, Kolachala VL, Joshi GN, Nagpal S, Gibson G and Gupta NA: Angiotensin-converting enzyme-2 (ACE2) expression in pediatric liver disease. Appl Immunohistochem Mol Morphol. 30:647–653. 2022. View Article : Google Scholar : PubMed/NCBI | |
Osterreicher CH, Taura K, De Minicis S, Seki E, Penz-Osterreicher M, Kodama Y, Kluwe J, Schuster M, Oudit GY, Penninger JM and Brenner DA: Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology. 50:929–938. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dong F, Li H, Liu L, Yao LL, Wang J, Xiang D, Ma J, Zhang G, Zhang S, Li J, et al: ACE2 negatively regulates the Warburg effect and suppresses hepatocellular carcinoma progression via reducing ROS-HIF1α activity. Int J Biol Sci. 19:2613–2629. 2023. View Article : Google Scholar : PubMed/NCBI | |
Paizis G, Tikellis C, Cooper ME, Schembri JM, Lew RA, Smith AI, Shaw T, Warner FJ, Zuilli A, Burrell LM and Angus PW: Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut. 54:1790–1796. 2005. View Article : Google Scholar : PubMed/NCBI | |
Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z, Lew RA, Smith AI, Burrell LM and Angus PW: Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental biliary fibrosis. J Hepatol. 47:387–395. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ye G, Qin Y, Lu X, Xu X, Xu S, Wu C, Wang X, Wang S and Pan D: The association of renin-angiotensin system genes with the progression of hepatocellular carcinoma. Biochem Biophys Res Commun. 459:18–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Domovitz T, Ayoub S, Werbner M, Alter J, Izhaki Tavor L, Yahalom-Ronen Y, Tikhonov E, Meirson T, Maman Y, Paran N, et al: HCV infection increases the expression of ACE2 receptor, leading to enhanced entry of both HCV and SARS-CoV-2 into hepatocytes and a coinfection state. Microbiol Spectr. 10:e01150222022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Yang ZL, Ren X, Zou Q, Yuan Y, Liang L, Chen M and Chen S: ACE2 and FZD1 are prognosis markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of gallbladder. J Mol Histol. 45:47–57. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zong H, Yin B, Zhou H, Cai D, Ma B and Xiang Y: Loss of angiotensin-converting enzyme 2 promotes growth of gallbladder cancer. Tumour Biol. 36:5171–5177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee JJ, Kopetz S, Vilar E, Shen JP, Chen K and Maitra A: Relative abundance of SARS-CoV-2 Entry genes in the enterocytes of the lower gastrointestinal tract. Genes (Basel). 11:6452020. View Article : Google Scholar : PubMed/NCBI | |
Suárez-Fariñas M, Tokuyama M, Wei G, Huang R, Livanos A, Jha D, Levescot A, Irizar H, Kosoy R, Cording S, et al: Intestinal inflammation modulates the expression of ACE2 and TMPRSS2 and potentially overlaps with the pathogenesis of SARS-CoV-2-related disease. Gastroenterology. 160:287–301.e20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, et al: ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 487:477–481. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bao R, Hernandez K, Huang L and Luke JJ: ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: Implications for SARS-CoV-2 COVID-19. J Immunother Cancer. 8:e0010202020. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Prasad R, Feng D, Beli E, Li Calzi S, Longhini ALF, Lamendella R, Floyd JL, Dupont M, Noothi SK, et al: Bone Marrow-derived cells restore functional integrity of the gut epithelial and vascular barriers in a model of diabetes and ACE2 deficiency. Circ Res. 125:969–988. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nataf S and Pays L: Molecular Insights into SARS-CoV2-induced alterations of the Gut/Brain axis. Int J Mol Sci. 22:104402021. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Xiao L, Li F, Zhang H, Li Q, Liu H, Fu S, Li C, Zhang X, Wang J, et al: Generation of outbred Ace2 knockout mice by RNA transfection of TALENs displaying colitis reminiscent pathophysiology and inflammation. Transgenic Res. 24:433–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shahrokh S, Baradaran Ghavami S, Asadzadeh Aghdaei H, Parigi TL, Farmani M, Danese S, Ebrahimi Daryani N, Vossoughinia H, Balaii H, Alborzi F, et al: High prevalence of SARS-Coronavirus-2 in patients with inflammatory bowel disease and the role of soluble angiotensin converting enzyme 2. Arch Physiol Biochem. 130:325–332. 2024. View Article : Google Scholar : PubMed/NCBI | |
Potdar AA, Dube S, Naito T, Li K, Botwin G, Haritunians T, Li D, Casero D, Yang S, Bilsborough J, et al: Altered intestinal ACE2 levels are associated with inflammation, severe disease, and response to Anti-cytokine therapy in inflammatory bowel disease. Gastroenterology. 160:809–822. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang K and Wang Y: Dandelion root extracts and taraxasterol inhibit LPS-induced colorectal cancer cell viability by blocking TLR4-NFκB-driven ACE2 and TMPRSS2 pathways. Exp Ther Med. 27:2562024. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Yang J: Colorectal cancer that highly express both ACE2 and TMPRSS2, suggesting severe symptoms to SARS-CoV-2 infection. Pathol Oncol Res. 27:6129692021. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wang K, Zhang M, Hu X, Hu T, Liu Y, Hu Q, Wu S and Yue J: High expression of ACE2 and TMPRSS2 and clinical characteristics of COVID-19 in colorectal cancer patients. NPJ Precis Oncol. 5:12021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Gong W, Wei H, Dai W and Xu S: 2019-nCoV may create complications in colon cancer patients with ACE2 expression. Int J Clin Exp Pathol. 13:2305–2311. 2020.PubMed/NCBI | |
Li S, Chen S, Zhu Q, Ben S, Gao F, Xin J, Du M, Chu H, Gu D, Zhang Z and Wang M: The impact of ACE2 and co-factors on SARS-CoV-2 infection in colorectal cancer. Clin Transl Med. 12:e9672022. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Zou TH, Xuan B, Yan Y, Yan T, Shen C, Zhao G, Chen YX, Xiao X, Hong J and Fang JY: Single cell transcriptome revealed SARS-CoV-2 entry genes enriched in colon tissues and associated with coronavirus infection and cytokine production. Signal Transduct Target Ther. 5:1212020. View Article : Google Scholar : PubMed/NCBI | |
Ahmadi M, Pashangzadeh S, Mousavi P, Saffarzadeh N, Amin Habibi M, Hajiesmaeili F and Rezaei N: ACE2 correlates with immune infiltrates in colon adenocarcinoma: Implication for COVID-19. Int Immunopharmacol. 95:1075682021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Kapoor S, Tripathi C, Perez JT, Mohan N, Dashwood WM, Zhang K, Rajendran P and Dashwood R: Targeting ACE2-BRD4 crosstalk in colorectal cancer and the deregulation of DNA repair and apoptosis. NPJ Precis Oncol. 7:202023. View Article : Google Scholar : PubMed/NCBI | |
Triana S, Metz-Zumaran C, Ramirez C, Kee C, Doldan P, Shahraz M, Schraivogel D, Gschwind AR, Sharma AK, Steinmetz LM, et al: Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. Mol Syst Biol. 17:e102322021. View Article : Google Scholar : PubMed/NCBI | |
Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, et al: SARS-CoV-2 productively infects human gut enterocytes. Science. 369:50–54. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ottaiano A, Scala S, D'Alterio C, D'Alterio C, Trotta A, Bello A, Rea G, Picone C, Santorsola M, Petrillo A and Nasti G: Unexpected tumor reduction in metastatic colorectal cancer patients during SARS-Cov-2 infection. Ther J Med Oncol. 13:175883592110114552021. View Article : Google Scholar : PubMed/NCBI | |
Cappello F, Burgio S, Conway de Macario E and Macario AJL: Unexpected tumor reduction in metastatic colorectal cancer patients during SARS-Cov-2 infection: Effect of ACE-2 expression on tumor cells or molecular mimicry phenomena? Two not mutually exclusive hypotheses. Ther Adv Med Oncol. 13:175883592110278252021. View Article : Google Scholar : PubMed/NCBI | |
Pakbin B, Dibazar SP, Allahyari S, Shariatifar H, Brück WM and Farasat A: ACE2-inhibitory effects of bromelain and ficin in colon cancer cells. Medicina (Kaunas). 59:3012023. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zimpelmann J, Cheng K, Wilkins JA and Burns KD: The role of angiotensin converting enzyme 2 in the generation of angiotensin 1–7 by rat proximal tubules. Am J Physiol Renal Physiol. 288:F353–F362. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Lu W, Li K, Ding Y and Wang J: ACE2 expression in kidney and testis may cause kidney and testis infection in COVID-19 patients. Front Med (Lausanne). 13:5638932021. View Article : Google Scholar | |
He Q, Mok TN, Yun L, He C, Li J and Pan J: Single-cell RNA sequencing analysis of human kidney reveals the presence of ACE2 receptor: A potential pathway of COVID-19 infection. Mol Genet Genomic Med. 8:e14422020. View Article : Google Scholar : PubMed/NCBI | |
Lin W, Fan J, Hu LF, Zhang Y, Ooi JD, Meng T, Jin P, Ding X, Peng LK, Song L, et al: Single-cell analysis of angiotensin-converting enzyme II expression in human kidneys and bladders reveals a potential route of 2019 novel coronavirus infection. Chin Med J (Engl). 134:935–943. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pan XW, Xu D, Zhang H, Zhou W, Wang LH and Cui XG: Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intensive Care Med. 46:1114–1116. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J and Cooper ME: Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension. 41:392–397. 2003. View Article : Google Scholar : PubMed/NCBI | |
Soler MJ, Wysocki J, Ye M, Lloveras J, Kanwar Y and Batlle D: ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int. 72:614–623. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vergara A, Wang K, Colombo D, Gheblawi M, Rasmuson J, Mandal R, Del Nonno F, Chiu B, Scholey JW, Soler MJ, et al: Urinary angiotensin-converting enzyme 2 and metabolomics in COVID-19-mediated kidney injury. Clin Kidney J. 16:272–284. 2022. View Article : Google Scholar : PubMed/NCBI | |
Burns WC, Velkoska E, Dean R, Burrell LM and Thomas MC: Angiotensin II mediates epithelial-to-mesenchymal transformation in tubular cells by ANG 1–7/MAS-1-dependent pathways. Am J Physiol Renal Physiol. 299:F585–F593. 2010. View Article : Google Scholar : PubMed/NCBI | |
Choong OK, Jakobsson R, Bergdahl AG, Brunet S, Kärmander A, Waldenström J, Arvidsson Y, Altiparmak G, Nilsson JA, Karlsson J, et al: SARS-CoV-2 replicates and displays oncolytic properties in clear cell and papillary renal cell carcinoma. PLoS One. 18:e02795782023. View Article : Google Scholar : PubMed/NCBI | |
Larrinaga G, Pérez I, Sanz B, Blanco L, López JI, Cándenas ML, Pinto FM, Gil J, Irazusta J and Varona A: Angiotensin-converting enzymes (ACE and ACE2) are downregulated in renal tumors. Regul Pept. 165:218–23. 2010. View Article : Google Scholar : PubMed/NCBI | |
Errarte P, Beitia M, Perez I, Manterola L, Lawrie CH, Solano-Iturri JD, Calvete-Candenas J, Unda M, López JI and Larrinaga G: Expression and activity of angiotensin-regulating enzymes is associated with prognostic outcome in clear cell renal cell carcinoma patients. PLoS One. 12:e01817112017. View Article : Google Scholar : PubMed/NCBI | |
Niu X, Zhu Z, Shao E and Bao J: ACE2 is a prognostic biomarker and associated with immune infiltration in kidney renal clear cell carcinoma: Implication for COVID-19. J Oncol. 2021:88473072021. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Li L, Zhang K, Ma K, Xie H, Gong Y, Zhou J and Gong K: ACE2 correlated with immune infiltration serves as a novel prognostic biomarker in clear cell renal cell carcinoma: Implication for COVID-19. Int J Biol Sci. 17:20–31. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Li H, Hu S and Zhou Y: ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: Implication for COVID-19. Aging (Albany NY). 12:6518–6535. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang Q, Wang Y, Ou L, Li J, Zheng K, Zhan H, Gu J, Zhou G, Xie S, Zhang J, et al: Downregulation of ACE2 expression by SARS-CoV-2 worsens the prognosis of KIRC and KIRP patients via metabolism and immunoregulation. Int J Biol Sci. 17:1925–1939. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siljee S, Milne B, Brasch HD, Bockett N, Patel J, Davis PF, Kennedy-Smith A, Itinteang T and Tan ST: Expression of components of the Renin-angiotensin system by cancer stem cells in renal clear cell carcinoma. Biomolecules. 11:5372021. View Article : Google Scholar : PubMed/NCBI | |
Cane R, Kennedy-Smith A, Brasch HD, Savage S, Marsh RW and Itinteang T, Tan ST and Itinteang T: Characterization of cancer stem cells in renal clear cell carcinoma. J Stem Cell Regen Biol. 5:6–17. 2019. | |
Wang T, Xie F, Li YH and Liang B: Downregulation of ACE2 is associated with advanced pathological features and poor prognosis in clear cell renal cell carcinoma. Future Oncol. 17:5033–5044. 2021. View Article : Google Scholar : PubMed/NCBI | |
Khanna P, Soh HJ, Chen CH, Saxena R, Amin S, Naughton M, Joslin PN, Moore A, Bakouny Z, O'Callaghan C, et al: ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1–7) as a therapy for clear cell renal cell carcinoma. Sci Transl Med. 13:eabc01702021. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Yang W, Lu M and Zhang R: Identification of a 6-Gene signature associated with resistance to tyrosine kinase inhibitors: Prognosis for clear cell renal cell carcinoma. Med Sci Monit. 26:e9270782020. View Article : Google Scholar : PubMed/NCBI | |
Douglas GC, O'Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI and Lew RA: The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology. 145:4703–4711. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Xu X: scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, leydig and sertoli cells. Cells. 9:9202020. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro MR, Calado AM, Alves Â, Pereira R, Sousa M and Sá R: Spatial distribution of SARS-CoV-2 receptors and proteases in testicular cells. J Histochem Cytochem. 71:169–197. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Chen Y, Tang W, Zhang L, Chen W, Yan Z, Yuan P, Yang M, Kong S, Yan L and Qiao J: Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci China Life Sci. 63:1006–1015. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen Q, Xiao X, Aierken A, Yue W, Wu X, Liao M and Hua J: The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J Cell Mol Med. 24:9472–9477. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gianzo M and Subirán N: Regulation of male fertility by the Renin-angiotensin system. Int J Mol Sci. 21:79432020. View Article : Google Scholar : PubMed/NCBI | |
Reis AB, Araújo FC, Pereira VM, Dos Reis AM, Santos RA and Reis FM: Angiotensin (1–7) and its receptor Mas are expressed in the human testis: Implications for male infertility. J Mol Histol. 41:75–80. 2010. View Article : Google Scholar : PubMed/NCBI | |
Song H, Seddighzadeh B, Cooperberg MR and Huang FW: Expression of ACE2, the SARS-CoV-2 Receptor, and TMPRSS2 in prostate epithelial cells. Eur Urol. 78:296–298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Krishnan B, Smith TL, Dubey P, Zapadka ME, Torti FM, Willingham MC, Tallant EA and Gallagher PE: Angiotensin-(1–7) attenuates metastatic prostate cancer and reduces osteoclastogenesis. Prostate. 73:71–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krishnan B, Torti FM, Gallagher PE and Tallant EA: Angiotensin-(1–7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1. Prostate. 73:60–70. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bhowmick NA, Oft J, Dorff T, Pal S, Agarwal N, Figlin RA, Posadas EM, Freedland SJ and Gong J: COVID-19 and androgen-targeted therapy for prostate cancer patients. Endocr Relat Cancer. 27:R281–R292. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vaz-Silva J, Carneiro MM, Ferreira MC, Pinheiro SV, Silva DA, Silva-Filho AL, Witz CA, Reis AM, Santos RA and Reis FM: The vasoactive peptide angiotensin-(1–7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod Sci. 16:247–256. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chadchan SB, Popli P, Maurya VK and Kommagani R: The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization. Biol Reprod. 104:336–343. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Zhou YJ, Liu Y, Shen HM, Li XD, Yan X and Tang HJ: Expression and significance of ACE2-Ang-(1–7)-Mas axis in the endometrium of patients with polycystic ovary syndrome. Zhonghua Yi Xue Za Zhi. 93:1989–1992. 2013.(In Chinese). PubMed/NCBI | |
Haouzi D, Entezami F, Tuaillon E, Gala A, Ferrières-Hoa A, Brouillet S, Thierry AR and Hamamah S: SARS-CoV-2 and implantation window: Gene expression mapping of human endometrium and preimplantation embryo. Life (Basel). 11:13782021.PubMed/NCBI | |
Naigaonkar A, Patil K, Joseph S, Hinduja I and Mukherjee S: Ovarian granulosa cells from women with PCOS express low levels of SARS-CoV-2 receptors and co-factors. Arch Gynecol Obstet. 306:547–555. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Semerci N, De Assis V, Kayisli UA, Schatz F, Steffensen TS, Guzeloglu-Kayisli O and Lockwood CJ: Regulation of proinflammatory molecules and tissue factor by SARS-CoV-2 spike protein in human placental cells: Implications for SARS-CoV-2 pathogenesis in pregnant women. Front Immunol. 13:8765552022. View Article : Google Scholar : PubMed/NCBI | |
Valdés G, Neves LA, Anton L, Corthorn J, Chacón C, Germain AM, Merrill DC, Ferrario CM, Sarao R, Penninger J and Brosnihan KB: Distribution of angiotensin-(1–7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta. 27:200–207. 2006. View Article : Google Scholar : PubMed/NCBI | |
Essahib W, Verheyen G, Tournaye H and Van de Velde H: SARS-CoV-2 host receptors ACE2 and CD147 (BSG) are present on human oocytes and blastocysts. J Assist Reprod Genet. 37:2657–2660. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reis FM, Bouissou DR, Pereira VM, Camargos AF, dos Reis AM and Santos RA: Angiotensin-(1–7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil Steril. 95:176–181. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stanley KE, Thomas E, Leaver M and Wells D: Coronavirus disease-19 and fertility: Viral host entry protein expression in male and female reproductive tissues. Fertil Steril. 114:33–43. 2020. View Article : Google Scholar : PubMed/NCBI | |
Domińska K: Involvement of ACE2/Ang-(1–7)/MAS1 axis in the regulation of ovarian function in mammals. Int J Mol Sci. 21:45722020. View Article : Google Scholar : PubMed/NCBI | |
Nagappan A, Kim KH and Moon Y: Caveolin-1-ACE2 axis modulates xenobiotic metabolism-linked chemoresistance in ovarian clear cell carcinoma. Cell Biol Toxicol. 39:1181–1201. 2023. View Article : Google Scholar : PubMed/NCBI | |
Delforce SJ, Lumbers ER, Corbisier de Meaultsart C, Wang Y, Proietto A, Otton G, Scurry J, Verrills NM, Scott RJ and Pringle KG: Expression of renin-angiotensin system (RAS) components in endometrial cancer. Endocr Connect. 6:9–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Grzegrzolka J, Swiatko K, Pula B, Zamirska A, Olbromski M, Bieniek A, Szepietowski J, Rys J, Dziegiel P and Podhorska-Okolow M: ACE and ACE2 expression in normal and malignant skin lesions. Folia Histochem Cytobiol. 51:232–238. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siljee S, Pilkington T, Brasch HD, Bockett N, Patel J, Paterson E, Davis PF and Tan ST: Cancer stem cells in head and neck metastatic malignant melanoma express components of the renin-angiotensin system. Life (Basel). 10:2682020.PubMed/NCBI | |
Ender SA, Dallmer A, Lässig F, Lendeckel U and Wolke C: Expression and function of the ACE2/angiotensin(1–7)/Mas axis in osteosarcoma cell lines U-2 OS and MNNG-HOS. Mol Med Rep. 10:804–810. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nehme A, Cerutti C, Dhaouadi N, Gustin MP, Courand PY, Zibara K and Bricca G: Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Sci Rep. 5:100352015. View Article : Google Scholar : PubMed/NCBI | |
Haznedaroglu IC and Malkan UY: Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies. Eur Rev Med Pharmacol Sci. 20:4089–4111. 2016.PubMed/NCBI | |
Lin C, Datta V, Okwan-Duodu D, Chen X, Fuchs S, Alsabeh R, Billet S, Bernstein KE and Shen XZ: Angiotensin-converting enzyme is required for normal myelopoiesis. FASEB J. 25:1145–1155. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rodgers KE, Xiong S and diZerega GS: Accelerated recovery from irradiation injury by angiotensin peptides. Cancer Chemother Pharmacol. 49:403–411. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rodgers KE, Espinoza T, Roda N, Meeks CJ, Hill C, Louie SG and Dizerega GS: Accelerated hematopoietic recovery with angiotensin-(1–7) after total body radiation. Int J Radiat Biol. 88:466–476. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M, Marlicz W and Kucia M: SARS-CoV-2 Entry receptor ACE2 is expressed on very small CD45-precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the Nlrp3 inflammasome. Stem Cell Rev Rep. 17:266–277. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park TS and Zambidis ET: A role for the renin-angiotensin system in hematopoiesis. Haematologica. 94:745–747. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zambidis ET, Park TS, Yu W, Tam A, Levine M, Yuan X, Pryzhkova M and Péault B: Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood. 112:3601–3614. 2008. View Article : Google Scholar : PubMed/NCBI | |
Uz B, Tatonyan SC, Sayitoglu M, Erbilgin Y, Ng OH, Buyukasik Y, Sayinalp N, Aksu S, Goker H, Ozcebe OI, et al: Local hematopoietic renin-angiotensin system in myeloid versus lymphoid hematological neoplastic disorders. J Renin Angiotensin Aldosterone Syst. 14:308–314. 2013. View Article : Google Scholar : PubMed/NCBI | |
Teresa Gomez Casares M, de la Iglesia S, Perera M, Lemes A, Campo C, Gonzalez San Miguel JD, Bosch JM, Suarez A, Guerra L, Rodriguez-Peréz JC and Molero T: Renin expression in hematological malignancies and its role in the regulation of hematopoiesis. Leuk Lymphoma. 43:2377–2381. 2002. View Article : Google Scholar : PubMed/NCBI | |
Alshareef A: Effect of SARS-CoV-2 entry factors on myeloid cancers. J Nippon Med Sch. 89:95–101. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kozako T and Soeda S, Yoshimitsu M, Arima N, Kuroki A, Hirata S, Tanaka H, Imakyure O, Tone N, Honda S and Soeda S: Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells. FEBS Open Bio. 6:442–460. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lima RS, Carvalho Rocha LP and Rocha Moreira P: Genetic and epigenetic control of ACE2 expression and its possible role in COVID-19. Cell Biochem Funct. 39:713–726. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dowell J, Bice Z, Yan K, Girija G and Konduri GG: Hyperoxia-induced airflow restriction and Renin-Angiotensin system expression in a bronchopulmonary dysplasia mouse model. Physiol Rep. 12:e158952024. View Article : Google Scholar : PubMed/NCBI | |
Miroslavova Pencheva M and Nikolaeva Genova S: SARS-CoV-2 induced changes in the lungs based on autopsy cases. Indian J Pathol Microbiol. 66:19–23. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ulrich–Merzenich GS, Shcherbakova A, Pizarro C and Dirk Skowasch D: Dexamethasone, remdesivir and azithromycin modulate ACE2 and IL-6 in lung epithelial cells. Pneumologie. 79:134–140. 2025. View Article : Google Scholar : PubMed/NCBI | |
Miura Y, Ohkubo H, Nakano A, Bourke JE and Kanazawa S: Pathophysiological conditions induced by SARS-CoV-2 infection reduce ACE2 expression in the lung. Front Immunol. 13:10286132022. View Article : Google Scholar : PubMed/NCBI | |
Koehler VF, Knösel T, Hasmann SE, Scherer C, Hellmuth JC, Muenchhoff M, Munker SM, Hoster E, Ladurner R and Spitzweg C: Thyroidal Angiotensin-Converting enzyme 2 protein expression and thyroid function tests in patients with COVID-19: Results from a retrospective case series and a prospective cohort study. Thyroid. 33:177–185. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bronowicka–Szydełko A, Rabczyński M, Dumas I, Fiodorenko-Dumas Z, Wojtczak B, Kotyra L, Kustrzeba–Wójcicka I, Lewandowski L, Ponikowska B, Kuzan A, et al: State of knowledge about thyroid cancers in the era of COVID-19-A narrative review. Biomedicines. 12:28292024. View Article : Google Scholar : PubMed/NCBI | |
Serwaa A, Oyawoye F, Amoakoh Owusu I, Dosoo D, Adom Manu A, Kojo Sobo A, Fosu K, Ochieng Olwal C, Kojo Quashie P and Rosebud Aikins A: In vitro analysis suggests that SARS-CoV-2 infection differentially modulates cancer-like phenotypes and cytokine expression in colorectal and prostate cancer cells. Sci Rep. 14:246252024. View Article : Google Scholar : PubMed/NCBI | |
Shirazi M, Cianfarini C, Ismail A, Wysocki J, Wang JJ, Ye M, Zhang ZJ and Batlle D: Altered kidney distribution and loss of ACE2 into the urine in acute kidney injury. Am J Physiol Renal Physiol. 327:F412–F425. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sanad AM, Qadri F, Popova E, Rodrigues AF, Heinbokel T, Quach S, Schulz A, Bachmann S, Kreutz R, Alenina N and Bader M: Transgenic angiotensin-converting enzyme 2 overexpression in the rat vasculature protects kidneys from ageing-induced injury. Kidney Int. 104:293–304. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rago V, Bossio S, Lofaro D, Perri A and Di Agostino S: New insights into the link between SARS-CoV-2 infection and renal cancer. Life (Basel). 14:522023.PubMed/NCBI | |
Singh Parmar H, Nayak A, Kumar Gavel P, Chandra Jha H, Bhagwat S and Sharma R: Cross talk between COVID-19 and breast cancer. Curr Cancer Drug Targets. 21:575–600. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sinha S, Cheng K, Schäffer AA, Aldape K, Schiff E and Ruppin E: In vitro and in vivo identification of clinically approved drugs that modify ACE2 expression. Mol Syst Biol. 16:e96282020. View Article : Google Scholar : PubMed/NCBI | |
Beacon TH, Delcuve GP and Davie JR: Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus. Genome. 64:386–399. 2021. View Article : Google Scholar : PubMed/NCBI |