1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Han B, Zheng R, Zeng H, Wang S, Sun K,
Chen R, Li L, Wei W and He J: Cancer incidence and mortality in
China, 2022. J Natl Cancer Cent. 4:47–53. 2024. View Article : Google Scholar : PubMed/NCBI
|
3
|
Francoeur AA, Monk BJ and Tewari KS:
Treatment advances across the cervical cancer spectrum. Nat Rev
Clin Oncol. 22:182–199. 2025. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xu M, Cao C, Wu P, Huang X and Ma D:
Advances in cervical cancer: Current insights and future
directions. Cancer Commun (Lond). 45:77–109. 2025. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tanigawa T, Takeshima N, Ishikawa H,
Nishio S, Usami T, Yamawaki T, Oishi T, Ihira K, Kato H, Goto M, et
al: Paclitaxel-carboplatin and bevacizumab combination with
maintenance bevacizumab therapy for metastatic, recurrent, and
persistent uterine cervical cancer: An open-label multicenter phase
II trial (JGOG1079). Gynecol Oncol. 165:413–419. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Muthusami S, Sabanayagam R, Periyasamy L,
Muruganantham B and Park WY: A review on the role of epidermal
growth factor signaling in the development, progression and
treatment of cervical cancer. Int J Biol Macromol. 194:179–187.
2022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fontenot VE, Francoeur A and Tewari KS:
Review of emerging biological therapies for recurrent and advanced
metastatic cervical cancer. Expert Opin Biol Ther. 24:709–713.
2024. View Article : Google Scholar : PubMed/NCBI
|
8
|
Feng X, Li J and Liu P: The Biological
roles of translation initiation factor 3b. Int J Biol Sci.
14:1630–1635. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Huang R, Nie W, Mi L, Yao C and Zhu H:
EIF3B stabilizes PCNA by counteracting SYVN1-mediated
ubiquitination to serve as a promotor in cholangiocarcinoma. Aging.
16:7311–7330. 2024.PubMed/NCBI
|
10
|
Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia
C: EIF3B promotes cancer progression in pancreatic cancer. Scand J
Gastroenterol. 56:281–288. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu C, Shen Y, Shi Y, Zhang M and Zhou L:
Eukaryotic translation initiation factor 3 subunit B promotes head
and neck cancer via CEBPB translation. Cancer Cell Int. 22:1612022.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang H, Sun F, Jiang S, Yang F, Dong X,
Liu G, Wang M, Li Y, Su M, Wen Z, et al: METTL protein family:
Focusing on the occurrence, progression and treatment of cancer.
Biomark Res. 12:1052024. View Article : Google Scholar : PubMed/NCBI
|
13
|
Qi YN, Liu Z, Hong LL, Li P and Ling ZQ:
Methyltransferase-like proteins in cancer biology and potential
therapeutic targeting. J Hematol Oncol. 16:892023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Su R, Dong L, Li Y, Gao M, He PC, Liu W,
Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an
m6A-independent function to facilitate translation and
tumorigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu P, Tan Q, Jiang W, Ou Y, Xu P and Yuan
L: Eukaryotic translation initiation factor 3B is overexpressed and
correlates with deteriorated tumor features and unfavorable
survival profiles in cervical cancer patients. Cancer Biomark.
26:123–130. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chandrashekar DS, Karthikeyan SK, Korla
PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne
U, et al: UALCAN: An update to the integrated cancer data analysis
platform. Neoplasia. 25:18–27. 2022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zeman J, Itoh Y, Kukacka Z, Rosůlek M,
Kavan D, Kouba T, Jansen ME, Mohammad MP, Novák P and Valášek LS:
Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal
subunit is accompanied by dramatic structural changes. Nucleic
Acids Res. 47:8282–8300. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu Q, Liu J, Zheng D, Zhang R, Xiang Y,
Xu F, Zhou X and Qin J: EIF3D promoted cervical carcinoma through
Warburg effect by interacting with GRP78. J Obstet Gynaecol.
43:21302002023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhong Y and Lan J: Overexpression of
Eukaryotic translation initiation factor 3D induces stem cell-like
properties and metastasis in cervix cancer by activating FAK
through inhibiting degradation of GRP78. Bioengineered.
13:1952–1961. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang L and Ouyang L: Effects of EIF3B gene
downregulation on apoptosis and proliferation of human ovarian
cancer SKOV3 and HO-8910 cells. Biomed Pharmacother. 109:831–837.
2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ren H, Mai G, Liu Y, Xiang R, Yang C and
Su W: Eukaryotic Translation initiation factor 3 Subunit B is a
promoter in the development and progression of pancreatic cancer.
Front Oncol. 11:6441562021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sobocan M, Smolle MA, Schatz C and
Haybaeck J: The interplay of tumor stroma and translational factors
in endometrial cancer. Cancers (Basel). 12:20742020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liaghat M, Ferdousmakan S, Mortazavi SH,
Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A,
Farzam F, Aziziyan F, et al: The impact of epithelial-mesenchymal
transition (EMT) induced by metabolic processes and intracellular
signaling pathways on chemo-resistance, metastasis, and recurrence
in solid tumors. Cell Commun Signal. 22:5752024. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang Y, Hong W and Wei X: The molecular
mechanisms and therapeutic strategies of EMT in tumor progression
and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li N, Wei X, Dai J, Yang J and Xiong S:
METTL3: A multifunctional regulator in diseases. Mol Cell Biochem.
480:3429–3454. 2025. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo X, Huang A, Qi Y, Chen J, Yang M and
Jin M: METTL3/IGF2BP2 promotes the malignant progression of
esophageal cancer by activating the PIK3CA/AKT pathway. Thorac
Cancer. 16:e700222025. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liang W, Peng Z, Mingchu Z and Deshui Y:
METTL3 mediated WISP1 m6A modification promotes
epithelial-mesenchymal transition and tumorigenesis in laryngeal
squamous cell carcinoma via m6A reader IGF2BP1. Gene.
941:1492222025. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang H, Sun F, Cao H, Yang L, Yang F,
Chen R, Jiang S, Wang R, Yu X, Li B and Chu X: UBA protein family:
An emerging set of E1 ubiquitin ligases in cancer-A review. Int J
Biol Macromol. 308:1422772025. View Article : Google Scholar : PubMed/NCBI
|
30
|
Singh S, Gupta S, Abhishek R and Sachan M:
Regulation of m6A (N6-Methyladenosine) methylation modifiers in
solid cancers. Funct Integr Genomics. 24:1932024. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zeng C, Huang W, Li Y and Weng H: Roles of
METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol
Oncol. 13:1172020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Choe J, Lin S, Zhang W, Liu Q, Wang L,
Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA
circularization by METTL3-eIF3h enhances translation and promotes
oncogenesis. Nature. 561:556–560. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zheng R, Zhang K, Tan S, Gao F, Zhang Y,
Xu W, Wang H, Gu D, Zhu L, Li S, et al: Exosomal circLPAR1
functions in colorectal cancer diagnosis and tumorigenesis through
suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer.
21:492022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dickerson H, Diab A and Al Musaimi O:
Epidermal growth factor receptor tyrosine kinase inhibitors in
cancer: Current use and future prospects. Int J Mol Sci.
25:100082024. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hamid MB, Serafin AM and Akudugu JM:
Selective therapeutic benefit of X-rays and inhibitors of EGFR,
PI3K/mTOR, and Bcl-2 in breast, lung, and cervical cancer cells.
Eur J Pharmacol. 912:1746122021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hua H, Zhang H, Chen J, Wang J, Liu J and
Jiang Y: Targeting Akt in cancer for precision therapy. J Hematol
Oncol. 14:1282021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lin S, Choe J, Du P, Triboulet R and
Gregory RI: The m(6)A methyltransferase METTL3 promotes translation
in human cancer cells. Mol Cell. 62:335–345. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang L, Yang Q, Zhou Q, Fang F, Lei K, Liu
Z, Zheng G, Zhu L, Huo J, Li X, et al:
METTL3-m6A-EGFR-axis drives lenvatinib resistance in
hepatocellular carcinoma. Cancer Lett. 559:2161222023. View Article : Google Scholar : PubMed/NCBI
|