
Advances in lymphoma biomarkers research based on proteomics technology (Review)
- Authors:
- Qibei Liu
- Jianmin Ling
- Zhao Li
- Lintao Bi
-
Affiliations: Department of Hematology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China - Published online on: July 2, 2025 https://doi.org/10.3892/or.2025.8941
- Article Number: 108
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Ansell SM: Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management. Am J Hematol. 99:2367–2378. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Klein C, Jamois C and Nielsen T: Anti-CD20 treatment for B-cell malignancies: Current status and future directions. Expert Opin Biol Ther. 21:161–181. 2021. View Article : Google Scholar : PubMed/NCBI | |
Califf RM: Biomarker definitions and their applications. Exp Biol Med (Maywood). 243:213–221. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hristova VA and Chan DW: Cancer biomarker discovery and translation: Proteomics and beyond. Expert Rev Proteomics. 16:93–103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Müllner S, Neumann T and Lottspeich F: Proteomics-a new way for drug target discovery. Arzneimittelforschung. 48:93–95. 1998.PubMed/NCBI | |
Cox J and Mann M: Quantitative, High-resolution proteomics for Data-driven systems biology. Annu Rev Biochem. 80:273–299. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K, Rogers JC, Roberts TM, Gygi SP and Paulo JA: TMTpro-18plex: The expanded and complete set of TMTpro reagents for sample multiplexing. J Proteome Res. 20:2964–2972. 2021. View Article : Google Scholar : PubMed/NCBI | |
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK and Hamon C: Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 75:1895–1904. 2003. View Article : Google Scholar : PubMed/NCBI | |
Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC and Haynes PA: Less label, more free: Approaches in Label-free quantitative mass spectrometry. Proteomics. 11:535–553. 2011. View Article : Google Scholar : PubMed/NCBI | |
Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, et al: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 8:2912017. View Article : Google Scholar : PubMed/NCBI | |
Yung L and Linch D: Hodgkin's lymphoma. Lancet. 361:943–951. 2003. View Article : Google Scholar : PubMed/NCBI | |
The guidelines for diagnosis and treatment of Hodgkin lymphoma in China (2022). Zhonghua Xue Ye Xue Za Zhi. 43:705–715. 2022.(In Chinese). PubMed/NCBI | |
Repetto O, Mussolin L, Elia C, Martina L, Bianchi M, Buffardi S, Sala A, Burnelli R, Mascarin M and De Re V: Proteomic identification of plasma biomarkers in children and adolescents with recurrent hodgkin lymphoma. J Cancer. 9:4650–4658. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brice P, de Kerviler E and Friedberg JW: Classical hodgkin lymphoma. Lancet. 398:1518–1527. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, Radford J, Ribrag V, Molin D, Vassilakopoulos TP, et al: Phase II study of the efficacy and safety of pembrolizumab for Relapsed/refractory classic hodgkin lymphoma. J Clin Oncol. 35:2125–2132. 2017. View Article : Google Scholar : PubMed/NCBI | |
Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL and Forero-Torres A: Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 363:1812–1821. 2010. View Article : Google Scholar : PubMed/NCBI | |
von Hoff L, Kärgel E, Franke V, McShane E, Schulz-Beiss KW, Patone G, Schleussner N, Kolesnichenko M, Hübner N, Daumke O, et al: Autocrine LTA signaling drives NF-κB and JAK-STAT activity and myeloid gene expression in Hodgkin lymphoma. Blood. 133:1489–1494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Segges P, Corrêa S, Du Rocher B, Vera-Lozada G, Krsticevic F, Arce D, Sternberg C, Abdelhay E and Hassan R: Targeting hodgkin and Reed-sternberg cells with an inhibitor of Heat-shock protein 90: Molecular pathways of response and potential mechanisms of resistance. Int J Mol Sci. 19:8362018. View Article : Google Scholar : PubMed/NCBI | |
Repetto O, Caggiari L, De Zorzi M, Elia C, Mussolin L, Buffardi S, Pillon M, Muggeo P, Casini T, Steffan A, et al: Quantitative plasma proteomics to identify candidate biomarkers of relapse in Pediatric/adolescent hodgkin lymphoma. Int J Mol Sci. 23:99112022. View Article : Google Scholar : PubMed/NCBI | |
Honoré B, Andersen MD, Wilken D, Kamper P, d'Amore F, Hamilton-Dutoit S and Ludvigsen M: Classic hodgkin lymphoma refractory for ABVD treatment is characterized by pathologically activated signal transduction pathways as revealed by proteomic profiling. Cancers (Basel). 14:2472022. View Article : Google Scholar : PubMed/NCBI | |
Kischel P, Waltregny D, Greffe Y, Mazzucchelli G, De Pauw E, de Leval L and Castronovo V: Identification of stromal proteins overexpressed in nodular sclerosis Hodgkin lymphoma. Proteome Sci. 9:632011. View Article : Google Scholar : PubMed/NCBI | |
Powlesland AS, Barrio MM, Mordoh J, Hitchen PG, Dell A, Drickamer K and Taylor ME: Glycoproteomic characterization of carriers of the CD15/Lewisx epitope on Hodgkin's Reed-Sternberg cells. BMC Biochem. 12:132011. View Article : Google Scholar : PubMed/NCBI | |
Gholiha AR, Hollander P, Löf L, Larsson A, Hashemi J, Ulfstedt JM, Molin D, Amini RM, Freyhult E, Kamali-Moghaddam M and Enblad G: Immune-proteome profiling in classical hodgkin lymphoma tumor diagnostic tissue. Cancers (Basel). 14:92021. View Article : Google Scholar : PubMed/NCBI | |
Epstein MA, Achong BG and Barr YM: Virus particles in cultured lymphoblasts from burkitt's lymphoma. Lancet. 1:702–703. 1964. View Article : Google Scholar : PubMed/NCBI | |
Thompson MP and Kurzrock R: Epstein-Barr virus and cancer. Clin Cancer Res. 10:803–821. 2004. View Article : Google Scholar : PubMed/NCBI | |
Myriam BD, Sonia Z, Hanene S, Teheni L and Mounir T: Prognostic significance of Epstein-Barr virus (EBV) infection in Hodgkin lymphoma patients. J Infect Chemother. 23:121–130. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ludvigsen M, Kamper P, Hamilton-Dutroit SJ, Bendix K, Møller MB, d'Amore FA and Honoré B: Relationship of intratumoural protein expression patterns to age and Epstein-Barr virus status in classical Hodgkin lymphoma. Eur J Haematol. 95:137–149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sarathkumara YD, Xian RR, Liu Z, Yu KJ, Chan JKC, Kwong YL, Lam TH, Liang R, Chiu B, Xu J, et al: A proteome-wide analysis unveils a core Epstein-barr virus antibody signature of classic Hodgkin lymphoma across ethnically diverse populations. Int J Cancer. 155:1476–1486. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Jarrett RF, Hjalgrim H, Proietti C, Chang ET, Smedby KE, Yu KJ, Lake A, Troy S, McAulay KA, et al: Evaluation of the antibody response to the EBV proteome in EBV-associated classical Hodgkin lymphoma. Int J Cancer. 147:608–618. 2020. View Article : Google Scholar : PubMed/NCBI | |
Silkenstedt E, Salles G, Campo E and Dreyling M: B-cell Non-hodgkin lymphomas. Lancet. 403:1791–1807. 2024. View Article : Google Scholar : PubMed/NCBI | |
Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M and Pileri SA: Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 87:146–171. 2013. View Article : Google Scholar : PubMed/NCBI | |
Susanibar-Adaniya S and Barta SK: 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 96:617–629. 2021. View Article : Google Scholar : PubMed/NCBI | |
Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD and Jaffe ES: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 127:2375–2390. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Müller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, et al: Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 103:275–282. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rosenwald A and Staudt LM: Gene expression profiling of diffuse large B-cell lymphoma. Leuk Lymphoma. 44 (Suppl 3):S41–S47. 2003. View Article : Google Scholar : PubMed/NCBI | |
Roschewski M, Phelan JD and Wilson WH: Molecular classification and treatment of diffuse Large B-cell lymphoma and primary mediastinal B-cell lymphoma. Cancer J. 26:195–205. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao HX, Nuerlan A, Abulajiang G, Cui WL, Xue J, Sang W, Li SJ, Niu J, Ma ZP, Zhang W and Li XX: Quantitative proteomics analysis of differentially expressed proteins in activated B-cell-like diffuse large B-cell lymphoma using quantitative proteomics. Pathol Res Pract. 215:1525282019. View Article : Google Scholar : PubMed/NCBI | |
van der Meeren LE, Kluiver J, Rutgers B, Alsagoor Y, Kluin PM, van den Berg A and Visser L: A super-SILAC based proteomics analysis of diffuse large B-cell lymphoma-NOS patient samples to identify new proteins that discriminate GCB and non-GCB lymphomas. PLoS One. 14:e02232602019. View Article : Google Scholar : PubMed/NCBI | |
Reinders J, Altenbuchinger M, Limm K, Schwarzfischer P, Scheidt T, Strasser L, Richter J, Szczepanowski M, Huber CG, Klapper W, et al: Platform independent protein-based cell-of-origin subtyping of diffuse large B-cell lymphoma in formalin-fixed paraffin-embedded tissue. Sci Rep. 10:78762020. View Article : Google Scholar : PubMed/NCBI | |
Fornecker LM, Muller L, Bertrand F, Paul N, Pichot A, Herbrecht R, Chenard MP, Mauvieux L, Vallat L, Bahram S, et al: Multi-omics dataset to decipher the complexity of drug resistance in diffuse large B-cell lymphoma. Sci Rep. 9:8952019. View Article : Google Scholar : PubMed/NCBI | |
Zhou N, Choi J, Grothusen G, Kim BJ, Ren D, Cao Z, Liu Y, Li Q, Inamdar A, Beer T, et al: DLBCL-associated NOTCH2 mutations escape Ubiquitin-dependent degradation and promote chemoresistance. Blood. 142:973–988. 2023. View Article : Google Scholar : PubMed/NCBI | |
McCrury M, Swafford K, Shuttleworth SL, Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu YZ, et al: Bifunctional inhibitor reveals NEK2 as a therapeutic target and regulator of oncogenic pathways in lymphoma. Mol Cancer Ther. 23:316–329. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bram Ednersson S, Stern M, Fagman H, Nilsson-Ehle H, Hasselblom S, Thorsell A and Andersson PO: Proteomic analysis in diffuse large B-cell lymphoma identifies dysregulated tumor microenvironment proteins in non-GCB/ABC subtype patients. Leuk Lymphoma. 62:2360–2373. 2021. View Article : Google Scholar : PubMed/NCBI | |
Elfrink S, Ter Beest M, Janssen L, Baltissen MP, Jansen P, Kenyon AN, Steen RM, de Windt D, Hagemann PM, Hess C, et al: IRF8 is a transcriptional activator of CD37 expression in diffuse large B-cell lymphoma. Blood Adv. 6:2254–2266. 2022. View Article : Google Scholar : PubMed/NCBI | |
Levy MY, Grudeva-Popova Z, Trneny M, Jurczak W, Pylypenko H, Jagadeesh D, Andre M, Nasta S, Rechavi-Robinson D, Toffanin S, et al: Safety and efficacy of Cd37-Targeting naratuximab emtansine plus rituximab in diffuse large B-cell lymphoma and other Non-hodgkin's B-cell Lymphomas-A phase 2 study. Hematological Oncol. 39:18–22. 2021. | |
Gao HX, Li SJ, Niu J, Ma ZP, Nuerlan A, Xue J, Wang MB, Cui WL, Abulajiang G, Sang W, et al: TCL1 as a hub protein associated with the PI3K/AKT signaling pathway in diffuse large B-cell lymphoma based on proteomics methods. Pathol Res Pract. 216:1527992020. View Article : Google Scholar : PubMed/NCBI | |
Lou N, Wang G, Wang Y, Xu M, Zhou Y, Tan Q, Zhong Q, Zhang L, Zhang X, Liu S, et al: Proteomics identifies circulating TIMP-1 as a prognostic biomarker for diffuse Large B-Cell lymphoma. Mol Cell Proteomics. 22:1006252023. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Lu X, Gentles AJ, Zhao D, Wander SA, Zhang Y, Natkunam Y, Slingerland J, Reis IM, Rabinovich B, et al: HGAL inhibits lymphoma dissemination by interacting with multiple cytoskeletal proteins. Blood Adv. 5:5072–5085. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Zhu Y, Xuan Y, Gao H, Cai X, Piersma SR, Pham TV, Schelfhorst T, Haas R, Bijnsdorp IV, et al: DPHL: A DIA Pan-human protein mass spectrometry library for robust biomarker discovery. Genomics Proteomics Bioinformatics. 18:104–119. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ludvigsen M, Campbell AJ, Enemark MB, Hybel TE, Karjalainen-Lindsberg ML, Beiske K, Bjerre M, Pedersen LM, Holte H, Leppä S, et al: Proteomics uncovers molecular features for relapse risk stratification in patients with diffuse large B-cell lymphoma. Blood Cancer J. 13:1612023. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Zhong M, Tang Y, Liu X, Liu Y, Wang L and Zhou H: The role and underlying mechanism of exosomal CA1 in chemotherapy resistance in diffuse large B cell lymphoma. Mol Ther Nucleic Acids. 21:452–463. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kwiecińska A, Porwit A, Souchelnytskyi N, Kaufeldt A, Larsson C, Bajalica-Lagercrantz S and Souchelnytskyi S: Proteomic profiling of diffuse large B-cell lymphomas. Pathobiology. 85:211–219. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hiratsuka T, Ito S, Sakai R, Yokose T, Endo T, Daigo Y, Miyagi Y and Tsuruyama T: Proteome analysis of CD5-positive diffuse large B cell lymphoma FFPE tissue reveals downregulation of DDX3X, DNAJB1, and B cell receptor signaling pathway proteins including BTK and Immunoglobulins. Clin Proteomics. 20:362023. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi X, Wu Z, Gao H, Cai X, Ruan G, et al: High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol Oncol. 13:2305–2328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kurtin PJ: Mantle cell lymphoma. Adv Anat Pathol. 5:376–398. 1998. View Article : Google Scholar : PubMed/NCBI | |
Palomero J, Vegliante MC, Rodríguez ML, Eguileor A, Castellano G, Planas-Rigol E, Jares P, Ribera-Cortada I, Cid MC, Campo E, et al: SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood. 124:2235–2247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hanel W, Lata P, Youssef Y, Tran H, Tsyba L, Sehgal L, Blaser BW, Huszar D, Helmig-Mason J, Zhang L, et al: A sumoylation program is essential for maintaining the mitotic fidelity in proliferating mantle cell lymphoma cells. Exp Hematol Oncol. 11:402022. View Article : Google Scholar : PubMed/NCBI | |
Lokhande L, Nilsson D, de Matos Rodrigues J, Hassan M, Olsson LM, Pyl PT, Vasquez L, Porwit A, Gerdtsson AS, Jerkeman M, et al: Quantification and profiling of early and late differentiation Stage T cells in mantle cell lymphoma reveals immunotherapeutic targets in subsets of patients. Cancers (Basel). 16:22892024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Heesom K, Osborn K, AlMohammed R, Sweet SM and Sinclair AJ: Identifying the cellular interactome of Epstein-barr virus lytic regulator zta reveals cellular targets contributing to viral replication. J Virol. 94:e00927–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Perez RD, Frey TR, Burton EM, Mannemuddhu S, Haley JD, McIntosh MT and Bhaduri-McIntosh S: Novel replisome-associated proteins at cellular replication forks in EBV-transformed B lymphocytes. PLoS Pathog. 15:e10082282019. View Article : Google Scholar : PubMed/NCBI | |
El-Mallawany NK, Day N, Ayello J, Van de Ven C, Conlon K, Fermin D, Basrur V, Elenitoba-Johnson K, Lim M and Cairo MS: Differential proteomic analysis of endemic and sporadic Epstein-Barr virus-positive and negative Burkitt lymphoma. Eur J Cancer. 51:92–100. 2015. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Eichhorst B, Robak T, Montserrat E, Ghia P, Niemann CU, Kater AP, Gregor M, Cymbalista F, Buske C, Hillmen P, et al: Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 32:23–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ikhlef L, Ratti N, Durand S, Formento R, Daverat H, Boutaud M, Guillou C, Dmytruk N, Gachard N, Cosette P, et al: Extracellular vesicles from type-2 macrophages increase the survival of chronic lymphocytic leukemia cells ex vivo. Cancer Gene Ther. 31:1164–1176. 2024. View Article : Google Scholar : PubMed/NCBI | |
Aslan B, Manyam G, Iles LR, Tantawy SI, Desikan SP, Wierda WG and Gandhi V: Transcriptomic and proteomic differences in BTK-WT and BTK-mutated CLL and their changes during therapy with pirtobrutinib. Blood Adv. 8:4487–4501. 2024. View Article : Google Scholar : PubMed/NCBI | |
Griffen TL, Hoff FW, Qiu Y, Lillard JW Jr, Ferrajoli A, Thompson P, Toro E, Ruiz K, Burger J, Wierda W, et al: Proteomic profiling based classification of CLL provides prognostication for modern therapy and identifies novel therapeutic targets. Blood Cancer J. 12:432022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Liu J, Zhang T, Shi M, Chen X, Chen Y and Yu J: Destabilization of ROR1 enhances activity of Ibrutinib against chronic lymphocytic leukemia in vivo. Pharmacol Res. 151:1045122020. View Article : Google Scholar : PubMed/NCBI | |
Wang ML, Barrientos JC, Furman RR, Mei M, Barr PM, Choi MY, de Vos S, Kallam A, Patel K, Kipps TJ, et al: Zilovertamab vedotin targeting of ROR1 as therapy for lymphoid cancers. NEJM Evid. 1:EVIDoa21000012022. View Article : Google Scholar : PubMed/NCBI | |
Choi MY, Widhopf GF II, Ghia EM, Kidwell RL, Hasan MK, Yu J, Rassenti LZ, Chen L, Chen Y, Pittman E, et al: Phase I trial: Cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell. 22:951–959.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
Johnston HE, Carter MJ, Larrayoz M, Clarke J, Garbis SD, Oscier D, Strefford JC, Steele AJ, Walewska R and Cragg MS: Proteomics profiling of CLL Versus Healthy B-cells identifies putative therapeutic targets and a Subtype-independent signature of spliceosome dysregulation. Mol Cell Proteomics. 17:776–791. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bagacean C, Iuga CA, Bordron A, Tempescul A, Pralea IE, Bernard D, Cornen M, Bergot T, Le Dantec C, Brooks W, et al: Identification of altered cell signaling pathways using proteomic profiling in stable and progressive chronic lymphocytic leukemia. J Leukoc Biol. 111:313–325. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Jin M, Fernandez M, Hart KL, Liao A, Ge X, Fernandes SM, McDonald T, Chen Z, Röth D, et al: METTL3-Mediated m6A modification controls splicing factor abundance and contributes to aggressive CLL. Blood Cancer Discov. 4:228–245. 2023. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam N, Bottek J, Thiebes S, Zec K, Kudla M, Soun C, de Dios Panal E, Lill JK, Pfennig A, Herrmann R, et al: Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Adv. 5:1259–1272. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ecker V, Brandmeier L, Stumpf M, Giansanti P, Moreira AV, Pfeuffer L, Fens M, Lu J, Kuster B, Engleitner T, et al: Negative feedback regulation of MAPK signaling is an important driver of chronic lymphocytic leukemia progression. Cell Rep. 42:1130172023. View Article : Google Scholar : PubMed/NCBI | |
Beckmann L, Berg V, Dickhut C, Sun C, Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A, Claasen J, et al: MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood. 138:544–556. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stachelscheid J, Jiang Q, Aszyk C, Warner K, Bley N, Müller T, Vydzhak O, Symeonidis K, Crispatzu G, Mayer P, et al: The proto-oncogene TCL1A deregulates cell cycle and genomic stability in CLL. Blood. 141:1425–1441. 2023. View Article : Google Scholar : PubMed/NCBI | |
Griffen TL, Hoff FW, Qiu Y, Burger J, Wierda W and Kornblau SM: Prognostication of DNA damage response protein expression patterns in chronic lymphocytic leukemia. Int J Mol Sci. 24:1425–1441. 2023. View Article : Google Scholar | |
Saberi Hosnijeh F, van der Straten L, Kater AP, van Oers MHJ, Posthuma WFM, Chamuleau MED, Bellido M, Doorduijn JK, van Gelder M, Hoogendoorn M, et al: Proteomic markers with prognostic impact on outcome of chronic lymphocytic leukemia patients under chemo-immunotherapy: Results from the HOVON 109 study. Exp Hematol. 89:55–60.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HA, Lütge A, Hüllein J, Wagner L, Giacopelli B, et al: Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. Nat Cancer. 2:853–864. 2021. View Article : Google Scholar : PubMed/NCBI | |
van Dijk AD, Griffen TL, Qiu YH, Hoff FW, Toro E, Ruiz K, Ruvolo PP, Lillard JW Jr, de Bont E, Burger JA, et al: RPPA-based proteomics recognizes distinct epigenetic signatures in chronic lymphocytic leukemia with clinical consequences. Leukemia. 36:712–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hengeveld PJ, Kolijn PM, Demmers JAA, Doff W, Dubois JMN, Rijken M, Assmann J, van der Straten L, Boiten HJ, Gussinklo KJ, et al: High-throughput proteomics identifies THEMIS2 as independent biomarker of Treatment-free survival in untreated CLL. Hemasphere. 7:e9512023. View Article : Google Scholar : PubMed/NCBI | |
Jacobsen E: Follicular lymphoma: 2023 update on diagnosis and management. Am J Hematol. 97:1638–1651. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sorigue M and Sancho JM: Recent landmark studies in follicular lymphoma. Blood Rev. 35:68–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
Enemark MBH, Wolter K, Campbell AJ, Andersen MD, Sørensen EF, Hybel TE, Madsen C, Lauridsen KL, Plesner TL, Hamilton-Dutoit SJ, et al: Proteomics identifies apoptotic markers as predictors of histological transformation in patients with follicular lymphoma. Blood Adv. 7:7418–7432. 2023. View Article : Google Scholar : PubMed/NCBI | |
Monrad I, Madsen C, Lauridsen KL, Honoré B, Plesner TL, Hamilton-Dutoit S, d'Amore F and Ludvigsen M: Glycolytic biomarkers predict transformation in patients with follicular lymphoma. PLoS One. 15:e02334492020. View Article : Google Scholar : PubMed/NCBI | |
Ludvigsen M, Madsen C, Kamper P, Hamilton-Dutoit SJ, Bendix K, d'Amore F and Honoré B: Histologically transformed follicular lymphoma exhibits protein profiles different from both Non-transformed follicular and de novo diffuse large B-cell lymphoma. Blood Cancer J. 5:e2932015. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Ma J, Zhao S, Yang M, Sun Y and Zhang Q: Expression of glucose transporter-1 in follicular lymphoma affected tumor-infiltrating immunocytes and was related to progression of disease within 24 months. Transl Oncol. 28:1016142023. View Article : Google Scholar : PubMed/NCBI | |
Radtke AJ, Postovalova E, Varlamova A, Bagaev A, Sorokina M, Kudryashova O, Meerson M, Polyakova M, Galkin I, Svekolkin V, et al: Multi-omic profiling of follicular lymphoma reveals changes in tissue architecture and enhanced stromal remodeling in high-risk patients. Cancer Cell. 42:444–463.e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, Phillips E, Sangha R, Schlag R, Seymour JF, et al: Obinutuzumab for the First-line treatment of follicular lymphoma. N Engl J Med. 377:1331–1344. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duś-Szachniewicz K, Rymkiewicz G, Agrawal AK, Kołodziej P and Wiśniewski JR: Large-scale proteomic analysis of follicular lymphoma reveals extensive remodeling of cell adhesion pathway and identifies hub proteins related to the lymphomagenesis. Cancers (Basel). 13:6302021. View Article : Google Scholar : PubMed/NCBI | |
Cheah CY and Seymour JF: Marginal zone lymphoma: 2023 update on diagnosis and management. Am J Hematol. 98:1645–1657. 2023. View Article : Google Scholar : PubMed/NCBI | |
Di Rocco A, Petrucci L, Assanto GM, Martelli M and Pulsoni A: Extranodal Marginal zone lymphoma: Pathogenesis, diagnosis and treatment. Cancers (Basel). 14:17422022. View Article : Google Scholar : PubMed/NCBI | |
Zucca E and Bertoni F: The spectrum of MALT lymphoma at different sites: Biological and therapeutic relevance. Blood. 127:2082–2092. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhou M, Zhou X, Jia S, Liu Z, Zhao Y, Shi J, Song X, Wang Y, Jia R, et al: Multi-omics and case-control analyses identify immunoglobulin M as a Tumour-derived serum biomarker of ocular adnexal extranodal marginal zone lymphoma. Clin Transl Med. 13:e12592023. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhu T, Lin H, Liu Z, Zhou M, Yu Z, Zhou X, Song X, Wang Y, Jia R, et al: Proteotranscriptomics of ocular adnexal B-cell lymphoma reveals an oncogenic role of alternative splicing and identifies a diagnostic marker. J Exp Clin Cancer Res. 41:2342022. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Shi J, Zhou X, Qiu C, Jia R, Huang S, Jia R, Wang Y, Song X and Zhou Y: MYC-targeted genes predict distant recurrence in patients with ocular adnexal extranodal marginal zone lymphoma. Ann Hematol. 102:2413–2423. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zucca E, Bertoni F, Stathis A and Cavalli F: Marginal zone lymphomas. Hematol Oncol Clin North Am. 22:883–901. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A and Rawla P: Epidemiology of Non-Hodgkin's Lymphoma. Med Sci (Basel). 9:52021.PubMed/NCBI | |
Mariette X and Criswell LA: Primary Sjögren's Syndrome. N Engl J Med. 378:931–939. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jazzar AA, Shirlaw PJ, Carpenter GH, Challacombe SJ and Proctor GB: Salivary S100A8/A9 in Sjögren's syndrome accompanied by lymphoma. J Oral Pathol Med. 47:900–906. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Elzakra N, Xu S, Xiao GG, Yang Y and Hu S: Investigation of three potential autoantibodies in Sjogren's syndrome and associated MALT lymphoma. Oncotarget. 8:30039–30049. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zou Q, Zhang H, Meng F, He L, Zhang J and Xiao D: Proteomic and transcriptomic studies of BGC823 cells stimulated with Helicobacter pylori isolates from gastric MALT lymphoma. PLoS One. 15:e02383792020. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Yang ZZ, Kim HJ, Anagnostou T, Yu Y, Wu X, Chen J, Krull JE, Wenzl K, Mondello P, et al: Phenotype, function, and clinical significance of CD26+ and CD161+tregs in splenic marginal zone lymphoma. Clin Cancer Res. 28:4322–4335. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yang M, Wu M, Zheng W, Xie Y, Zhu J, Song Y and Liu W: A retrospective study of the CHOP, CHOPE, and CHOPE/G regimens as the first-line treatment of peripheral T-cell lymphomas. Cancer Chemother Pharmacol. 83:443–449. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ludvigsen M, Bjerregård Pedersen M, Lystlund Lauridsen K, Svenstrup Poulsen T, Hamilton-Dutoit SJ, Besenbacher S, Bendix K, Møller MB, Nørgaard P, d'Amore F and Honoré B: Proteomic profiling identifies outcome-predictive markers in patients with peripheral T-cell lymphoma, not otherwise specified. Blood Adv. 2:2533–2542. 2018. View Article : Google Scholar : PubMed/NCBI | |
A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood. 89:3909–3918. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mora J, Filippa DA, Thaler HT, Polyak T, Cranor ML and Wollner N: Large cell non-Hodgkin lymphoma of childhood: Analysis of 78 consecutive patients enrolled in 2 consecutive protocols at the memorial Sloan-kettering cancer center. Cancer. 88:186–197. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ferreri AJ, Govi S, Pileri SA and Savage KJ: Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol Hematol. 83:293–302. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rajan SS, Amin AD, Li L, Rolland DC, Li H, Kwon D, Kweh MF, Arumov A, Roberts ER, Yan A, et al: The mechanism of cancer drug addiction in ALK-positive T-Cell lymphoma. Oncogene. 39:2103–2117. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lovisa F, Garbin A, Crotti S, Di Battista P, Gallingani I, Damanti CC, Tosato A, Carraro E, Pillon M, Mafakheri E, et al: Increased Tenascin C, Osteopontin and HSP90 levels in plasmatic small extracellular vesicles of pediatric ALK-positive anaplastic large cell lymphoma: New prognostic biomarkers? Diagnostics (Basel). 11:2532021. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Bao R, Lin M, Han XR, Ai YJ, Gao Y, Guan KL, Xiong Y and Yuan HX: ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3. Oncogene. 41:4547–4559. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Li W, Qin L, Liu S, Xue C, Ren K, Zhang Z, Liu C, Bao F, Zhang H, et al: Clinicopathologic characteristics, outcomes, and prognostic factors of angioimmunoblastic T-cell lymphoma in China. Cancer Med. 12:3987–3998. 2023. View Article : Google Scholar : PubMed/NCBI | |
Holst JM, Enemark MB, Pedersen MB, Lauridsen KL, Hybel TE, Clausen MR, Frederiksen H, Møller MB, Nørgaard P, Plesner TL, et al: Proteomic Profiling differentiates lymphoma patients with and without concurrent myeloproliferative neoplasia. Cancers (Basel). 13:55262021. View Article : Google Scholar : PubMed/NCBI | |
Au WY, Weisenburger DD, Intragumtornchai T, Nakamura S, Kim WS, Sng I, Vose J, Armitage JO and Liang R: Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: A study of 136 cases from the international peripheral T-Cell lymphoma project. Blood. 113:3931–3937. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Fu BB, Gale RP and Liang Y: NK-/T-cell lymphomas. Leukemia. 35:2460–2468. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y, et al: Genomic and transcriptomic characterization of natural Killer T cell lymphoma. Cancer Cell. 37:403–419.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zeng H, Zhao Y, Gong Y and Ma X: Proteomic analysis of cerebrospinal fluid from patients with extranodal NK-/T-Cell lymphoma of Nasal-type with ethmoidal sinus metastasis. Front Oncol. 9:14892019. View Article : Google Scholar : PubMed/NCBI | |
Lim SH, Hong JY, Lim ST, Hong H, Arnoud J, Zhao W, Yoon DH, Tang T, Cho J, Park S, et al: Beyond first-line non-anthracycline-based chemotherapy for extranodal NK/T-cell lymphoma: Clinical outcome and current perspectives on salvage therapy for patients after first relapse and progression of disease. Ann Oncol. 28:2199–2205. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Li Z, Sun Z, Zhang X, Lu L, Wang Y and Zhang M: S100A9 and ORM1 serve as predictors of therapeutic response and prognostic factors in advanced extranodal NK/T cell lymphoma patients treated with pegaspargase/gemcitabine. Sci Rep. 6:236952016. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Pu W, Jin H, Yang P, Zeng H, Wang Y, Pang F and Ma X: Quantitative proteomics of CSF reveals potential predicted biomarkers for extranodal NK-/T-cell lymphoma of nasal-type with ethmoidal sinus metastasis. Life Sci. 198:94–98. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Zhou Z, Li Z, Lu L, Li L, Li X, Wang X and Zhang M: Pretreatment 14-3-3 epsilon level is predictive for advanced extranodal NK/T cell lymphoma therapeutic response to asparaginase-based chemotherapy. Proteomics Clin Appl. Oct 24–2016.(Epub ahead of print). doi: 10.1002/prca.201600111. PubMed/NCBI | |
Bobrowicz M, Fassnacht C, Ignatova D, Chang YT, Dimitriou F and Guenova E: Pathogenesis and therapy of primary cutaneous T-Cell lymphoma: Collegium internationale allergologicum (CIA) update 2020. Int Arch Allergy Immunol. 181:733–745. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sethi TK, Montanari F, Foss F and Reddy N: How we treat advanced stage cutaneous T-cell lymphoma-mycosis fungoides and Sézary syndrome. Br J Haematol. 195:352–364. 2021. View Article : Google Scholar : PubMed/NCBI | |
Techner JM, Hooper MJ, Evans S, LeWitt TM, Paller AS, Guitart J, Lu KQ and Zhou XA: Skin tape strip proteomics in mycosis fungoides identifies Tumor-associated biomarkers. J Invest Dermatol. 143:517–520.e12. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qureshi HA, Azimi A, Wells J and Fernandez-Penas P: Tape stripped stratum corneum samples are suitable for diagnosis and comprehensive proteomic investigation in mycosis fungoides. Proteomics Clin Appl. 17:e22000392023. View Article : Google Scholar : PubMed/NCBI | |
Leng L, Liu Z, Ma J, Zhang S, Wang Y, Lv L, Zhu Y, Gao D, Wang Y, Wang J, et al: Proteomic identification of new diagnostic biomarkers of early-stage cutaneous mycosis fungoides. Cancer Commun (Lond). 42:558–562. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lemchak D, Banerjee S, Digambar SS, Hood BL, Conrads TP, Jedrych J, Geskin L and Akilov OE: Therapeutic and prognostic significance of PARP-1 in advanced mycosis fungoides and Sezary syndrome. Exp Dermatol. 27:188–190. 2018. View Article : Google Scholar : PubMed/NCBI |