
SENP1: A perspective from immune cells to disease (Review)
- Authors:
- Xiaofang Feng
- Guoyu Wu
- Qiyan Zeng
-
Affiliations: Department of Nuclear Medicine, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China, Department of Cardiothoracic Surgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China - Published online on: July 15, 2025 https://doi.org/10.3892/or.2025.8947
- Article Number: 114
-
Copyright: © Feng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Vertegaal A: Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Bio. 23:715–731. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang CH, Yang TT and Lin KI: Mechanisms and functions of SUMOylation in health and disease: A review focusing on immune cells. J Biomed Sci. 31:162024. View Article : Google Scholar : PubMed/NCBI | |
Azuma Y, Arnaoutov A and Dasso M: SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol. 163:477–487. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mahajan R, Delphin C, Guan T, Gerace L and Melchior F: A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 88:97–107. 1997. View Article : Google Scholar : PubMed/NCBI | |
Psakhye I, Castellucci F and Branzei D: SUMO-Chain-regulated proteasomal degradation timing exemplified in DNA replication initiation. Mol Cell. 76:632–645. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gareau JR and Lima CD: The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Bio. 11:861–871. 2010. View Article : Google Scholar : PubMed/NCBI | |
Geoffroy MC and Hay RT: An additional role for SUMO in Ubiquitin-mediated proteolysis. Nat Rev Mol Cell Bio. 10:564–568. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang HM and Yeh E: SUMO: From bench to bedside. Physiol Rev. 100:1599–1619. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hickey CM, Wilson NR and Hochstrasser M: Function and regulation of SUMO proteases. Nat Rev Mol Cell Bio. 13:755–766. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Millas S, Maul GG and Yeh ET: Differential regulation of sentrinized proteins by a novel Sentrin-specific protease. J Biol Chem. 275:3355–3359. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bailey D and O'Hare P: Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem. 279:692–703. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bettermann K, Benesch M, Weis S and Haybaeck J: SUMOylation in carcinogenesis. Cancer Lett. 316:113–125. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kroonen JS and Vertegaal A: Targeting SUMO signaling to wrestle cancer. Trends Cancer. 7:496–510. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hotz PW, Muller S and Mendler L: SUMO-specific isopeptidases tuning cardiac SUMOylation in health and disease. Front Mol Biosci. 8:7861362021. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Cao Y, Zheng Q, Tu J, Zhou W, He J, Zhong J, Chen Y, Wang J, Cai R, et al: SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell. 75:823–834. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Xiang H, Liu J, Chen Y, He RR and Liu B: Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics. 10:8315–8342. 2020. View Article : Google Scholar : PubMed/NCBI | |
Taghvaei S, Sabouni F and Minuchehr Z: Evidence of omics, immune infiltration, and pharmacogenomic for SENP1 in the Pan-cancer cohort. Front Pharmacol. 12:7004542021. View Article : Google Scholar : PubMed/NCBI | |
He J, Shangguan X, Zhou W, Cao Y, Zheng Q, Tu J, Hu G, Liang Z, Jiang C, Deng L, et al: Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. Nat Commun. 12:43712021. View Article : Google Scholar : PubMed/NCBI | |
Dai T, Zhang L, Ran Y, Zhang M, Yang B, Lu H, Lin S, Zhang L and Zhou F: MAVS deSUMOylation by SENP1 inhibits its aggregation and antagonizes IRF3 activation. Nat Struct Mol Biol. 30:785–799. 2023. View Article : Google Scholar : PubMed/NCBI | |
Van Nguyen T, Angkasekwinai P, Dou H, Lin FM, Lu LS, Cheng J, Chin YE, Dong C and Yeh ET: SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell. 45:210–221. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, Wang Y, Wang YD, Qian C, Xu B, et al: Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 576:471–476. 2019. View Article : Google Scholar : PubMed/NCBI | |
Elhage R, Kelly M, Goudin N, Megret J, Legrand A, Nemazanyy I, Patitucci C, Quellec V, Wai T, Hamai A, et al: Mitochondrial dynamics and metabolic regulation control T cell fate in the thymus. Front Immunol. 14:12702682023. View Article : Google Scholar : PubMed/NCBI | |
Cao YL, Meng S, Chen Y, Feng JX, Gu DD, Yu B, Li YJ, Yang JY, Liao S, Chan DC and Gao S: MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature. 542:372–376. 2017. View Article : Google Scholar : PubMed/NCBI | |
Buck MD, O'Sullivan D, Klein GR, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt GJ, et al: Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 166:63–76. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G and Rudensky AY: Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 158:749–763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huber M and Lohoff M: IRF4 at the crossroads of effector T-cell fate decision. Eur J Immunol. 44:1886–1895. 2014. View Article : Google Scholar : PubMed/NCBI | |
De Silva NS, Simonetti G, Heise N and Klein U: The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol Rev. 247:73–92. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yongjun C, Nan Q, Yumeng S, Xiaowen J and Weibo W: Dioscin alleviates hashimoto's thyroiditis by regulating the SUMOylation of IRF4 to promote CD4+CD25+Foxp3+ treg cell differentiation. Autoimmunity. 54:51–59. 2021. View Article : Google Scholar : PubMed/NCBI | |
Young C and Brink R: The unique biology of germinal center B cells. Immunity. 54:1652–1664. 2021. View Article : Google Scholar : PubMed/NCBI | |
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y and Honjo T: Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 102:553–563. 2000. View Article : Google Scholar : PubMed/NCBI | |
Qi J, Yan L, Sun J, Huang C, Su B, Cheng J and Shen L: SUMO-specific protease 1 regulates germinal center B cell response through deSUMOylation of PAX5. Proc Natl Acad Sci USA. 121:e19803481752024. View Article : Google Scholar | |
Lio CJ, Shukla V, Samaniego-Castruita D, Gonzalez-Avalos E, Chakraborty A, Yue X, Schatz DG, Ay F and Rao A: TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. Sci Immunol. 4:eaau75232019. View Article : Google Scholar : PubMed/NCBI | |
Turner CJ, Mack DH and Davis MM: Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 77:297–306. 1994. View Article : Google Scholar : PubMed/NCBI | |
Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG and Calame K: Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 19:607–620. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, Koskela K, Buerstedde JM and Lassila O: Loss of Pax5 promotes plasma cell differentiation. Immunity. 24:283–293. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Wong K and Calame K: Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science. 276:596–599. 1997. View Article : Google Scholar : PubMed/NCBI | |
Shimshon L, Michaeli A, Hadar R, Nutt SL, David Y, Navon A, Waisman A and Tirosh B: SUMOylation of Blimp-1 promotes its proteasomal degradation. Febs Lett. 585:2405–2409. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang YH, Tsai DY, Ko YA, Yang TT, Lin IY, Hung KH and Lin KI: Blimp-1 Contributes to the development and function of regulatory B cells. Front Immunol. 10:19092019. View Article : Google Scholar : PubMed/NCBI | |
Watanabe S, Alexander M, Misharin AV and Budinger G: The role of macrophages in the resolution of inflammation. J Clin Invest. 129:2619–2628. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salem S, Salem D and Gros P: Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases. Hum Genet. 139:707–721. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsujimura H, Tamura T, Gongora C, Aliberti J, Reis ESC, Sher A and Ozato K: ICSBP/IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood. 101:961–969. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Shen X, Na N, Chu Z, Su H, Chao S, Shi L, Xu Y, Zhang L, Shi B and Zhao Y: mTOR masters monocyte development in bone marrow by decreasing the inhibition of STAT5 on IRF8. Blood. 131:1587–1599. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chang TH, Xu S, Tailor P, Kanno T and Ozato K: The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation. J Immunol. 189:3548–3556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Italiani P and Boraschi D: From monocytes to M1/M2 macrophages: Phenotypical vs. Functional differentiation. Front Immunol. 5:5142014. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD and Pearce EJ: Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity. 45:817–830. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lefere S, Puengel T, Hundertmark J, Penners C, Frank AK, Guillot A, de Muynck K, Heymann F, Adarbes V, Defrene E, et al: Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages☆. J Hepatol. 73:757–770. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H and Li Y: Macrophage Polarization and its role in liver disease. Front Immunol. 12:8030372021. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Zuo Y, Cai R, Huang X, Wu S, Zhang C, Chin YE, Li D, Zhang Z, Xia N, et al: SENP1 regulates IFN-γ-STAT1 signaling through STAT3-SOCS3 negative feedback loop. J Mol Cell Biol. 9:144–153. 2017. View Article : Google Scholar : PubMed/NCBI | |
Regis G, Pensa S, Boselli D, Novelli F and Poli V: Ups and downs: The STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. Semin Cell Dev Biol. 19:351–359. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ghaleb AM and Yang VW: Kruppel-like factor 4 (KLF4): What we currently know. Gene. 611:27–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, et al: Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest. 121:2736–2749. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ, Park CW and Kim HS: Inhibition of p300/CBP-Associated factor attenuates renal tubulointerstitial fibrosis through modulation of NF-kB and Nrf2. Int J Mol Sci. 20:15542019. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Xiong J, Lu Y, Wang L and Tian T: SENP1-KLF4 signalling regulates LPS-induced macrophage M1 polarization. Febs J. 290:209–224. 2023. View Article : Google Scholar : PubMed/NCBI | |
Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, et al: The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 11:936–944. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, Di Conza G, Cheng WC, Chou CH, Vavakova M, et al: alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 18:985–994. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Hu G, He J, Wang T, Zuo Y, Cao Y, Zheng Q, Tu J, Ma J, Cai R, et al: SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Rep. 39:1106602022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP and Perlmann T: Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature. 423:555–560. 2003. View Article : Google Scholar : PubMed/NCBI | |
Flaig R, Greschik H, Peluso-Iltis C and Moras D: Structural basis for the cell-specific activities of the NGFI-B and the Nurr1 ligand-binding domain. J Biol Chem. 280:19250–19258. 2005. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Gonzalez J and Badimon L: The NR4A subfamily of nuclear receptors: New early genes regulated by growth factors in vascular cells. Cardiovasc Res. 65:609–618. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim SO, Ono K, Tobias PS and Han J: Orphan nuclear receptor Nur77 is involved in caspase-independent macrophage cell death. J Exp Med. 197:1441–1452. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xie F, Zhang J, Dijke PT and Zhou F: SUMO-triggered ubiquitination of NR4A1 controls macrophage cell death. Cell Death Differ. 24:1530–1539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Calsolaro V and Edison P: Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement. 12:719–732. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA and Maccioni RB: Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 8:1122014. View Article : Google Scholar : PubMed/NCBI | |
Jimi E, Fei H and Nakatomi C: NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci. 20:62752019. View Article : Google Scholar : PubMed/NCBI | |
Baeuerle PA: IkappaB-NF-kappaB structures: At the interface of inflammation control. Cell. 95:729–731. 1998. View Article : Google Scholar : PubMed/NCBI | |
Huang TT, Wuerzberger-Davis SM, Wu ZH and Miyamoto S: Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell. 115:565–576. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yang T, Sun J, Zhang S and Liu S: SENP1 modulates microglia-mediated neuroinflammation toward intermittent hypoxia-induced cognitive decline through the de-SUMOylation of NEMO. J Cell Mol Med. 25:6841–6854. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhai Q, Li F, Chen X, Jia J, Sun S, Zhou D, Ma L, Jiang T, Bai F, Xiong L, et al: Triggering receptor expressed on myeloid cells 2, a novel regulator of immunocyte phenotypes, confers neuroprotection by relieving neuroinflammation. Anesthesiology. 127:98–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xia CY, Zhang S, Gao Y, Wang ZZ and Chen NH: Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol. 25:377–382. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martini AC, Gomez-Arboledas A, Forner S, Rodriguez-Ortiz CJ, McQuade A, Danhash E, Phan J, Javonillo D, Ha JV, Tram M, et al: Amyloid-beta impairs TOM1-mediated IL-1R1 signaling. Proc Natl Acad Sci USA. 116:21198–21206. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang X, Shen Y, Wang Y, Yang T, Sun J and Liu S: SENP1 modulates chronic intermittent hypoxia-induced inflammation of microglia and neuronal injury by inhibiting TOM1 pathway. Int Immunopharmacol. 119:1102302023. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulos C, Panopoulou M, Anagnostopoulos K and Tentes I: Immune and metabolic interactions of human erythrocytes: A molecular perspective. Endocr Metab Immune. 21:843–853. 2021.PubMed/NCBI | |
Giaccia AJ, Simon MC and Johnson R: The biology of hypoxia: The role of oxygen sensing in development, normal function, and disease. Gene Dev. 18:2183–2194. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Kang X, Zhang S and Yeh ET: SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell. 131:584–595. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Ji W, Zhang H, Renda MJ, He Y, Lin S, Cheng EC, Chen H, Krause DS and Min W: SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. J Exp Med. 207:1183–1195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zheng C, Li D, Zhan W, He K and Yang H: Downregulation of SENP1 suppresses LPS-induced macrophage inflammation by elevating Sp3 SUMOylation and disturbing Sp3-NF-kappaB interaction. Am J Transl Res. 12:7439–7448. 2020.PubMed/NCBI | |
Zhang C, Li J, Qiu X, Chen Y and Zhang X: SUMO protease SENP1 acts as a ceRNA for TGFBR2 and thus activates TGFBR2/Smad signaling responsible for LPS-induced sepsis. Biomed Pharmacother. 112:1086202019. View Article : Google Scholar : PubMed/NCBI | |
Singhal J, Madan E, Chaurasiya A, Srivastava P, Singh N, Kaushik S, Kahlon AK, Maurya MK, Marothia M, Joshi P, et al: Host SUMOylation pathway negatively regulates protective immune responses and promotes leishmania donovani survival. Front Cell Infect Mi. 12:8781362022. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Bian X, Chen L, Zhang N, Li L, Tang W, Liu X and Li Z: Selective intra-arterial brain cooling induces cerebral protection against ischemia/reperfusion injury through SENP1-Sirt3 signaling. Free Radical Bio Med. 171:272–283. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, He J, Xu Y, Zuo Y, Zhou W, Yue Z, Shao X, Cheng J, Wang T and Mou S: AMPK activation coupling SENP1-Sirt3 axis protects against acute kidney injury. Mol Ther. 31:3052–3066. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Zhou C, Zhang C, Liang S, Zhou Z, Zhou Z, Wu C, Zhao H, Meng X, Zou F, et al: Nicotinamide mononucleotide attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Int Immunopharmacol. 127:1113282024. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Zhu X, Liu X, Zhao X, Lei X, Kang L and Liu L: Role of the SENP1-SIRT1 pathway in hyperoxia-induced alveolar epithelial cell injury. Free Radical Bio Med. 173:142–150. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rana T, Jiang C, Liu G, Miyata T, Antony V, Thannickal VJ and Liu RM: PAI-1 Regulation of TGF-beta1-induced alveolar type II cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am J Resp Cell Mol. 62:319–330. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Chen H, Liang J, Gu X, Zhou J, Xie C, Lv X, Wang R, Li Q, Mao Z, et al: TGF-beta1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Exp Mol Med. 52:130–151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Yang X, Chen L, Guo L, Huang H, Liu X, Yang Y and Xu Z: FSTL1 promotes alveolar epithelial cell aging and worsens pulmonary fibrosis by affecting SENP1-mediated DeSUMOylation. Cell Biol Int. 47:1716–1727. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Liu X, Yang X, Jing X, Duan C, Yang G, Wu C, Huang H, Luo Q, Xia S, et al: SENP1 regulates the transformation of lung resident mesenchymal stem cells and is associated with idiopathic pulmonary fibrosis progression. Cell Commun Signal. 20:1042022. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Jiang Y, Wang Y, Fan L, Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Pan Z, et al: Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension. Circ Res. 133:508–531. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Dang X, Huang Z, Lu Y, Tong H, Liang F, Zhuang F, Li Y, Cai Z, Huo H, et al: SUMOylation of TEAD1 modulates the mechanism of pathological cardiac hypertrophy. Adv Sci. 11:e23056772024. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Fan D, Guo Z, Liu FY, Wang MY, An P, Yang Z and Tang QZ: SENP1 protects against pressure Overload-induced cardiac remodeling and dysfunction via inhibiting STAT3 Signaling. J Am Heart Assoc. 11:e270042022. View Article : Google Scholar | |
Tokarz P and Wozniak K: SENP proteases as potential targets for cancer therapy. Cancers (Basel). 13:20592021. View Article : Google Scholar : PubMed/NCBI | |
Shangguan X, He J, Ma Z, Zhang W, Ji Y, Shen K, Yue Z, Li W, Xin Z, Zheng Q, et al: SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun. 12:18122021. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Zhang M, Yi B, Chen J, Wen S, Chen R, Chen T and Li Z: Emerging role of SENP1 in tumorigenesis and cancer therapy. Front Pharmacol. 15:13543232024. View Article : Google Scholar : PubMed/NCBI | |
Li X and Meng Y: Construction of a SUMOylation regulator-based prognostic model in low-grade glioma. J Cell Mol Med. 25:5434–5442. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Huang L, Zhang N, Deng YN, Cao X, Liang Y, Hou H, Luo Y, Yang Y, Li Q and Liang S: SUMOylation of annexin A6 retards cell migration and tumor growth by suppressing RHOU/AKT1-involved EMT in hepatocellular carcinoma. Cell Commun Signal. 22:2062024. View Article : Google Scholar : PubMed/NCBI | |
Claessens LA and Vertegaal A: SUMO proteases: From cellular functions to disease. Trends Cell Biol. 34:901–912. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wei M, Huang X, Liao L, Tian Y and Zheng X: SENP1 Decreases RNF168 phase separation to promote DNA damage repair and drug resistance in colon cancer. Cancer Res. 83:2908–2923. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Zhang C, Martincuks A, Herrmann A and Yu H: STAT proteins in cancer: Orchestration of metabolism. Nat Rev Cancer. 23:115–134. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang X, Li J, Lv P, Han M, Li L, Chen Z, Dong L, Wang N and Gu Y: Correction to: CircNOL10 suppresses breast cancer progression by sponging miR-767-5p to regulate SOCS2/JAK/STAT signaling. J Biomed Sci. 28:312021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ma Y, Wu G, Xie M, Luo C, Huang X, Tian F, Chen J and Li X: SENP1 promotes MCL pathogenesis through regulating JAK-STAT5 pathway and SOCS2 expression. Cell Death Discov. 7:1922021. View Article : Google Scholar : PubMed/NCBI | |
Sen B, Peng S, Woods DM, Wistuba I, Bell D, El-Naggar AK, Lai SY and Johnson FM: STAT5A-mediated SOCS2 expression regulates Jak2 and STAT3 activity following c-Src inhibition in head and neck squamous carcinoma. Clin Cancer Res. 18:127–139. 2012. View Article : Google Scholar : PubMed/NCBI | |
Batlle E and Massague J: Transforming growth factor-β signaling in immunity and cancer. Immunity. 50:924–940. 2019. View Article : Google Scholar : PubMed/NCBI | |
Akhurst RJ and Derynck R: TGF-beta signaling in cancer-a double-edged sword. Trends Cell Biol. 11 (Suppl):S44–S51. 2001. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Muthusamy BP and Saeteurn KY: Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 31:56–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang M, Melchior F, Feng XH and Lin X: Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1. J Biol Chem. 279:22857–22865. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang H, Wang H, Xiao F, Seth P, Xu W, Jia Q, Wu C, Yang Y and Wang L: SUMO-Specific cysteine protease 1 promotes epithelial mesenchymal transition of prostate cancer cells via regulating SMAD4 deSUMOylation. Int J Mol Sci. 18:8082017. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues A, Costa R, Silva S, Dias I, Dias RB and Bezerra DP: Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hemat. 160:1032772021. View Article : Google Scholar : PubMed/NCBI | |
Gu S, Hou Y, Dovat K, Dovat S, Song C and Ge Z: Synergistic effect of HDAC inhibitor Chidamide with Cladribine on cell cycle arrest and apoptosis by targeting HDAC2/c-Myc/RCC1 axis in acute myeloid leukemia. Exp Hematol Oncol. 12:232023. View Article : Google Scholar : PubMed/NCBI | |
Noh JH, Bae HJ, Eun JW, Shen Q, Park SJ, Kim HS, Nam B, Shin WC, Lee EK, Lee K, et al: HDAC2 provides a critical support to malignant progression of hepatocellular carcinoma through feedback control of mTORC1 and AKT. Cancer Res. 74:1728–1738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Chi DY, Yu P, Lu JJ, Xu JR, Tan PP, Wang B, Cui YY and Chen HZ: Carbocisteine improves histone deacetylase 2 deacetylation activity via regulating sumoylation of histone deacetylase 2 in human tracheobronchial epithelial cells. Front Pharmacol. 10:1662019. View Article : Google Scholar : PubMed/NCBI | |
Wen D, Xiao H, Gao Y, Zeng H and Deng J: N6-methyladenosine-modified SENP1, identified by IGF2BP3, is a novel molecular marker in acute myeloid leukemia and aggravates progression by activating AKT signal via de-SUMOylating HDAC2. Mol Cancer. 23:1162024. View Article : Google Scholar : PubMed/NCBI | |
Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Guo Y, Jin Q, Qu H, Qi D, Song P, Zhang X, Wang X, Xu W, Dong Y, et al: A SUMOylation-dependent HIF-1α/CLDN6 negative feedback mitigates hypoxia-induced breast cancer metastasis. J Exp Clin Canc Res. 39:422020. View Article : Google Scholar | |
Cui C, Wong CC, Kai AK, Ho DW, Lau EY, Tsui Y, Chan L, Cheung T, Chok KS, Chan ACY, et al: SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop. Gut. 66:2149–2159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee MH, Sung K, Beebe D, Huang W, Shapiro D, Miyamoto S and Abel EJ: The SUMO protease SENP1 promotes aggressive behaviors of high HIF2α expressing renal cell carcinoma cells. Oncogenesis. 11:652022. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Liu M, Liu H and Zhou L: GATA1 promotes colorectal cancer cell proliferation, migration and invasion via activating AKT signaling pathway. Mol Cell Biochem. 457:191–199. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Wang R, Liu J, Zhao K, Qian X, He X and Liu H: SENP1 promotes triple-negative breast cancer invasion and metastasis via enhancing CSN5 transcription mediated by GATA1 deSUMOylation. Int J Biol Sci. 18:2186–2201. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wan X, Yang X, Liu X, Huang Q, Zhou L, Zhang S, Liu S, Xiong Q, Wei M, et al: eIF3i promotes colorectal cancer cell survival via augmenting PHGDH translation. J Biol Chem. 299:1051772023. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Dong Z, Cui Q, Liu JY and Zhang JT: eIF3i regulation of protein synthesis, cell proliferation, cell cycle progression, and tumorigenesis. Cancer Lett. 500:11–20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li B, Xiong X, Xu J, Peng D, Nie G, Wen N, Wang Y and Lu J: METTL3-mediated m6A modification of lncRNA TSPAN12 promotes metastasis of hepatocellular carcinoma through SENP1-depentent deSUMOylation of EIF3I. Oncogene. 43:1050–1062. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, et al: RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 13:623–629. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ishizaki Y, Ikeda S, Fujimori M, Shimizu Y, Kurihara T, Itamoto T, Kikuchi A, Okajima M and Asahara T: Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol. 24:1077–1083. 2004.PubMed/NCBI | |
Song X, Wang S and Li L: New insights into the regulation of axin function in canonical wnt signaling pathway. Protein Cell. 5:186–193. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li W, Han Q, Zhu Y, Zhou Y, Zhang J, Wu W, Li Y, Liu L, Qiu Y, Hu K and Yin D: SUMOylation of RNF146 results in Axin degradation and activation of Wnt/β-catenin signaling to promote the progression of hepatocellular carcinoma. Oncogene. 42:1728–1740. 2023. View Article : Google Scholar : PubMed/NCBI | |
Condamine T, Ramachandran I, Youn J and Gabrilovich DI: Regulation of tumor metastasis by Myeloid-derived suppressor cells. Annu Rev Med. 66:97–110. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tesi RJ: MDSC; the Most Important cell you have never heard of. Trends Pharmacol Sci. 40:4–7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Zuo Y, Wang X, Wu X, Tan H, Fan Q, Dong B, Xue W, Chen GQ and Cheng J: SUMO-specific protease 1 is critical for Myeloid-derived suppressor cell development and function. Cancer Res. 79:3891–3902. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pouyssegur J, Dayan F and Mazure NM: Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441:437–443. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z, Liu M, Yeh ET, Chen G and Cheng J: Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J Biol Chem. 285:36682–36688. 2010. View Article : Google Scholar : PubMed/NCBI | |
Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–1135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Ding S, Qiu C, Shi Y, Song L, Wang Y, Wang Y, Li J, Wang Y, Sun Y, et al: SUMOylation negatively regulates angiogenesis by targeting endothelial NOTCH signaling. Circ Res. 121:636–649. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Chen R, Sun G, Liu X, Lin X, He C, Xing L, Liu L, Jensen LD, Kumar A, et al: VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway. Signal Transduct Tar. 8:3052023. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Qiu C, Wang Y, Jiang Y, Chen Y, Fan L, Ren R, Wang Y, Chen Y, Feng Y, et al: FGFR1 SUMOylation coordinates endothelial angiogenic signaling in angiogenesis. Proc Natl Acad Sci USA. 119:e20923361772022. View Article : Google Scholar | |
Bagno L, Hatzistergos KE, Balkan W and Hare JM: Mesenchymal stem Cell-based therapy for cardiovascular disease: Progress and challenges. Mol Ther. 26:1610–1623. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Liu Q, Lyu C, Gao X and Ma W: Knockdown SENP1 suppressed the angiogenic potential of mesenchymal stem cells by impacting CXCR4-Regulated MRTF-A SUMOylation and CCN1 expression. Biomedicines. 11:9142023. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dancik V, et al: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 10:16172019. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Berry WL and Janknecht R: KDM4/JMJD2 histone demethylases: Epigenetic regulators in cancer cells. Cancer Res. 73:2936–2942. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Jiang Y and Sun Y: KDM4A-mediated histone demethylation of SLC7A11 inhibits cell ferroptosis in osteosarcoma. Biochem Bioph Res Co. 550:77–83. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Chen P, He L, Chai X, Zhang Y and Sun S: Functional mechanism of hypoxia-like conditions mediating resistance to ferroptosis in cervical cancer cells by regulating KDM4A SUMOylation and the SLC7A11/GPX4 pathway. Environ Toxicol. 39:4207–4220. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Mao Y, Feng Z, Dai F, Gu T and Zheng J: SENP1 inhibits ferroptosis and promotes head and neck squamous cell carcinoma by regulating ACSL4 protein stability via SUMO1. Oncol Rep. 51:342024. View Article : Google Scholar : PubMed/NCBI | |
Dong J and Zheng X: SENP1 knockdown potentiates the apoptosis, cell cycle arrest, and reduces cisplatin resistance of diffuse large B cell lymphoma cells via inducing ferroptosis. Biochem Cell Biol. 102:319–330. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wei H, Zhou Y, Li Z, Gou W, Meng Y, Zheng W, Li J, Li Y and Zhu W: Identification of potent SENP1 inhibitors that inactivate SENP1/JAK2/STAT signaling pathway and overcome platinum drug resistance in ovarian cancer. Clin Transl Med. 11:e6492021. View Article : Google Scholar : PubMed/NCBI | |
Hu C and Jiang X: The SUMO-specific protease family regulates cancer cell radiosensitivity. Biomed Pharmacother. 109:66–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mu M, Zhang Q, Li J, Zhao C, Li X, Chen Z, Sun X and Yu J: USP51 facilitates colorectal cancer stemness and chemoresistance by forming a positive feed-forward loop with HIF1A. Cell Death Differ. 30:2393–2407. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wu R, Yung M, Sun J, Li Z, Yang H, Zhang Y, Liu SS, Cheung A, Ngan H, et al: SENP1-mediated deSUMOylation of JAK2 regulates its kinase activity and platinum drug resistance. Cell Death Dis. 12:3412021. View Article : Google Scholar : PubMed/NCBI | |
Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, et al: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell. 136:435–446. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA and Sixma TK: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 150:1182–1195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Zhang F, Huang J, et al: Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 3:11–40. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dai J, Hao Y, Chen X, Yu Q and Wang B: miR-122/SENP1 axis confers stemness and chemoresistance to liver cancer through Wnt/beta-catenin signaling. Oncol Lett. 26:3902023. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Liu B, Chen Z, Li G and Zhang Z: MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1alpha/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 11:2332020. View Article : Google Scholar : PubMed/NCBI | |
Loo SY, Toh LP, Xie WH, Pathak E, Tan W, Ma S, Lee MY, Shatishwaran S, Yeo J, Yuan J, et al: Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Sci Adv. 7:eabh24432021. View Article : Google Scholar : PubMed/NCBI | |
Carracedo A, Cantley LC and Pandolfi PP: Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shen Y, Wei W, Wang W, Jiang D, Ren Y, Peng Z, Fan Q, Cheng J and Ma J: Dysregulation of SIRT3 SUMOylation confers AML chemoresistance via controlling HES1-Dependent fatty acid oxidation. Int J Mol Sci. 23:82822022. View Article : Google Scholar : PubMed/NCBI | |
Zhang FL, Yang SY, Liao L, Zhang TM, Zhang YL, Hu SY, Deng L, Huang MY, Andriani L, Ma XY, et al: Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics. 13:973–990. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kumar A and Zhang KY: Advances in the development of SUMO specific protease (SENP) inhibitors. Comput Struct Biotec. 13:204–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Madasu C, Karri S, Sangaraju R, Sistla R and Uppuluri MV: Synthesis and biological evaluation of some novel 1,2,3-triazole hybrids of myrrhanone B isolated from Commiphora mukul gum resin: Identification of potent antiproliferative leads active against prostate cancer cells (PC-3). Eur J Med Chem. 188:1119742020. View Article : Google Scholar : PubMed/NCBI | |
Yoshioka Y, Namiki D, Makiuchi M, Sugaya K, Onose J, Ashida H and Abe N: Vialinin A and thelephantin G, potent inhibitors of tumor necrosis factor-alpha production, inhibit sentrin/SUMO-specific protease 1 enzymatic activity. Bioorg Med Chem Lett. 26:4237–4240. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li H, Chen L, Li Y and Hou W: SUMO-specific protease 1 inhibitors-A literature and patent overview. Expert Opin Ther Pat. 32:1207–1216. 2022. View Article : Google Scholar : PubMed/NCBI | |
Brand M, Bommeli EB, Rutimann M, Lindenmann U and Riedl R: Discovery of a dual SENP1 and SENP2 inhibitor. Int J Mol Sci. 23:120852022. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Guo J, Sun X, Gou W, Ning H, Shang H, Liu Q, Hou W and Li Y: Discovery of Natural Ursane-type SENP1 Inhibitors and the platinum resistance reversal activity against human ovarian cancer cells: A Structure-activity relationship study. J Nat Prod. 85:1248–1255. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Wang H, Zheng Q, Zhang J, Chen Z, Wang J, Ouyang L and Wang Y: Recent research and development of inhibitors targeting sentrin-specific protease 1 for the treatment of cancers. Eur J Med Chem. 241:1146502022. View Article : Google Scholar : PubMed/NCBI | |
Lindenmann U, Brand M, Gall F, Frasson D, Hunziker L, Kroslakova I, Sievers M and Riedl R: Discovery of a class of potent and selective Non-competitive Sentrin-specific protease 1 inhibitors. Chemmedchem. 15:675–679. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Jin J, Zhang J, Wang L and Cao J: Depletion of SENP1 suppresses the proliferation and invasion of triple-negative breast cancer cells. Oncol Rep. 36:2071–2078. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Xu Z, Li X, Yang Y, Li B, Li Y, Xia K, Wang J, Li S, Wang M and Wu H: α-catenin SUMOylation increases IκBα stability and inhibits breast cancer progression. Oncogenesis. 7:282018. View Article : Google Scholar : PubMed/NCBI | |
Sun XX, Chen Y, Su Y, Wang X, Chauhan KM, Liang J, Daniel CJ, Sears RC and Dai MS: SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. P Natl Acad Sci Usa. 115:10983–10988. 2018. View Article : Google Scholar | |
Yao B, Xing M, Zeng X, Zhang M, Zheng Q, Wang Z, Peng B, Qu S, Li L, Jin Y, et al: KMT2D-mediated H3K4me1 recruits YBX1 to facilitate triple-negative breast cancer progression through epigenetic activation of c-Myc. Clin Transl Med. 14:e17532024. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Tao W, Ni S and Chen Q: SENP1 Interacts with HIF1α to regulate glycolysis of prostatic carcinoma cells. Int J Biol Sci. 15:395–403. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Lei X, Lu Q, Wu Q, Ma Q, Huang D and Zhang Y: LncRNA FRMD6-AS1 promotes hepatocellular carcinoma cell migration and stemness by regulating SENP1/HIF-1α axis. Pathol Res Pract. 243:1543772023. View Article : Google Scholar : PubMed/NCBI | |
Conigliaro A, Tripodi M and Parola M: SENP1 activity sustains cancer stem cell in hypoxic HCC. Gut. 66:2051–2052. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Sun H, Shi X, Wang H, Cui C, Xiao F, Wu C, Guo X and Wang L: SENP1 regulates hepatocyte growth factor-induced migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Tumour Biol. 37:7741–7748. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Wang S and Zhang Z: E3 ubiquitin ligase SMURF2 prevents colorectal cancer by reducing the stability of the YY1 protein and inhibiting the SENP1/c-myc axis. Gene Ther. 30:51–63. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Tan GL, Jiang M, Wang TS, Liu GH, Xiong SS and Qing X: Effects of SENP1-induced deSUMOylation of STAT1 on proliferation and invasion in nasopharyngeal carcinoma. Cell Signal. 101:1105302023. View Article : Google Scholar : PubMed/NCBI | |
Wang FF, Liu MZ, Sui Y, Cao Q, Yan B, Jin ML and Mo X: Deficiency of SUMO-specific protease 1 induces arsenic trioxide-mediated apoptosis by regulating XBP1 activity in human acute promyelocytic leukemia. Oncol Lett. 12:3755–3762. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xing L, Guo X, Zhang X, Wang Y and Ren J: SENP1 exacerbates acute myeloid leukemia by enhancing BECN1-dependent autophagy through PTBP1 deSUMOylation. J Leukoc Biol. 11:1454–1468. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Sun HY, Xiao FJ, Wang H, Yang Y, Wang L, Gao CJ, Guo ZK, Wu CT and Wang LS: SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling. Biochem Biophys Res Commun. 460:409–415. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiao D, Wu M, Ji L, Liu F and Liu Y: MicroRNA-186 suppresses cell proliferation and metastasis through targeting Sentrin-specific protease 1 in renal cell carcinoma. Oncol Res. 26:249–259. 2018. View Article : Google Scholar : PubMed/NCBI | |
You J, Tao B, Peng L, Peng T, He H, Zeng S, Han J, Chen L, Xia X, Yang X and Zhong C: Transcription factor YY1 mediates self-renewal of glioblastoma stem cells through regulation of the SENP1/METTL3/MYC axis. Cancer Gene Ther. 30:683–693. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wen P, Li H, Liu L, Liu X, Xu Z and Dong J: SENP1-Mediated deSUMOylation regulates the tumor remodeling of glioma stem cells under hypoxic stress. Technol Cancer Res Treat. 23:153303382412574902024. View Article : Google Scholar : PubMed/NCBI | |
Xiang-Ming Y, Zhi-Qiang X, Ting Z, Jian W, Jian P, Li-Qun Y, Ming-Cui F, Hong-Liang X, Xu C and Yun Z: SENP1 regulates cell migration and invasion in neuroblastoma. Biotechnol Appl Bioc. 63:435–440. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Zhang S, Lin D, Wang W, Cheng J, Zheng Q, Wang H and Tan L: Suppressing SENP1 inhibits esophageal squamous carcinoma cell growth via SIRT6 SUMOylation. Cell Oncol (Dordr). 48:67–81. 2025. View Article : Google Scholar : PubMed/NCBI | |
Vishwamitra D, Curry CV, Shi P, Alkan S and Amin HM: SUMOylation confers posttranslational stability on NPM-ALK oncogenic protein. Neoplasia. 17:742–754. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hung PF, Hong TM, Chang CC, Hung CL, Hsu YL, Chang YL, Wu CT, Chang GC, Chan NL, Yu SL, et al: Hypoxia-induced slug SUMOylation enhances lung cancer metastasis. J Exp Clin Canc Res. 38:52019. View Article : Google Scholar |