
Potential therapeutic target in oncology: Protein palmitoylation (Review)
- Authors:
- Shiping Hao
- Yongming Mei
- Shaolin Chen
- Jing Liu
- Yao Zhang
- Zhengfeng Zhu
- Kangjia Zuo
-
Affiliations: The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: July 16, 2025 https://doi.org/10.3892/or.2025.8950
- Article Number: 117
-
Copyright: © Hao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Kiri S and Ryba T: Cancer, metastasis, and the epigenome. Mol Cancer. 23:1542024. View Article : Google Scholar : PubMed/NCBI | |
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y and Tang QZ: ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev. 94:1021762024. View Article : Google Scholar : PubMed/NCBI | |
He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W and Cheng F: Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med. 14:e700702024. View Article : Google Scholar : PubMed/NCBI | |
Millán-Zambrano G, Burton A, Bannister AJ and Schneider R: Histone post-translational modifications-cause and consequence of genome function. Nat Rev Genet. 23:563–580. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Mei J, Huang M, Bao D, Wang Z and Chen Y: O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol. 51:1022202025. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Song C and Zhan X: The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Han W: Protein Post-translational modifications in head and neck cancer. Front Oncol. 10:5719442020. View Article : Google Scholar : PubMed/NCBI | |
Goldtzvik Y, Sen N, Lam SD and Orengo C: Protein diversification through Post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol. 81:1026402023. View Article : Google Scholar : PubMed/NCBI | |
Janssen SM and Lorincz MC: Interplay between chromatin marks in development and disease. Nat Rev Genet. 23:137–153. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu D, Li Y, Wang X, Zou H, Li Z, Chen W, Meng Y, Wang Y, Li Q, Liao F, et al: Palmitoylation of NLRP3 modulates inflammasome activation and inflammatory bowel disease development. J Immunol. 213:481–493. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lu D, Aji G, Li G, Li Y, Fang W, Zhang S, Yu R, Jiang S, Gao X, Jiang Y, et al: ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation. J Clin Invest. 135:e1802422025. View Article : Google Scholar : PubMed/NCBI | |
Pan S and Chen R: Pathological implication of protein Post-translational modifications in cancer. Mol Aspects Med. 86:1010972022. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Wang Y, Li X, Zhou J, Yang W, Wang X, Jiao S, Zuo W, You Z, Ying W, et al: O-GlcNAcylation regulates the stability of transferrin receptor (TFRC) to control the ferroptosis in hepatocellular carcinoma cells. Redox Biol. 73:1031822024. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Liu S and Tao Y: Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct Target Ther. 5:902020. View Article : Google Scholar : PubMed/NCBI | |
Kumari S, Gupta R, Ambasta RK and Kumar P: Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer. 1878:1889992023. View Article : Google Scholar : PubMed/NCBI | |
Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C and Mijakovic I: Protein post-translational modifications in bacteria. Nat Rev Microbiol. 17:651–664. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, et al: Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (2020). 4:e2612023. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Xiao M, Mo Y, Wang H, Han Y, Zhao X, Yang X, Liu Z and Xu B: Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. Int J Biol Sci. 18:3447–3457. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Wang Y, Yao J, Mei L, Huang X, Kong H, Chen J, Chen X, Liu L, Wang Z, et al: ZDHHC7-mediated S-palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation. Autophagy. 20:2719–2737. 2024. View Article : Google Scholar : PubMed/NCBI | |
He Y, Li S, Jiang L, Wu K, Chen S, Su L, Liu C, Liu P, Luo W, Zhong S and Li Z: Palmitic acid accelerates endothelial cell injury and cardiovascular dysfunction via palmitoylation of PKM2. Adv Sci (Weinh). 12:e24128952025. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Liu J, Guo R, Yan L, Yang Y, Shi C, Zhang M, Shan B, Li W, Gu J and Xu D: Palmitoylation licenses RIPK1 kinase activity and cytotoxicity in the TNF pathway. Mol Cell. 84:4419–4435.e10. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li W, Li F, Zhang X, Lin HK and Xu C: Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther. 6:4222021. View Article : Google Scholar : PubMed/NCBI | |
Linder ME and Deschenes RJ: Palmitoylation: Policing protein stability and traffic. Nat Rev Mol Cell Biol. 8:74–84. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ko PJ and Dixon SJ: Protein palmitoylation and cancer. EMBO Rep. 19:e466662018. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y and Yang K: Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem. 271:1164082024. View Article : Google Scholar : PubMed/NCBI | |
Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X and Luo P: The role of s-palmitoylation in neurological diseases: Implication for zDHHC family. Front Pharmacol. 14:13428302023. View Article : Google Scholar : PubMed/NCBI | |
Mitchell DA, Vasudevan A, Linder ME and Deschenes RJ: Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res. 47:1118–1127. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stix R, Lee CJ, Faraldo-Gómez JD and Banerjee A: Structure and mechanism of DHHC protein acyltransferases. J Mol Biol. 432:4983–4998. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Agarwal S, Tan S, Shi H, Lu X, Tao Z, Dong X, Wu X, Zhao JC and Yu J: Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer. Oncogene. 42:2126–2138. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ohno Y, Kihara A, Sano T and Igarashi Y: Intracellular localization and tissue-specific distribution of human and yeast DHHC Cysteine-rich domain-containing proteins. Biochim Biophys Acta. 1761:474–483. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G and Pan Y: Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol. 12:14137082024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Shen L, Xu Z, Liu W, Li A and Xu J: Protein palmitoylation modification during viral infection and detection methods of palmitoylated proteins. Front Cell Infect Microbiol. 12:8215962022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li Y and Wu L: Protein S-palmitoylation modification: Implications in tumor and tumor immune microenvironment. Front Immunol. 15:13374782024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yan D, Liu J, Tang D and Chen X: Protein modification and degradation in ferroptosis. Redox Biol. 75:1032592024. View Article : Google Scholar : PubMed/NCBI | |
Dennis K and Heather LC: Post-translational palmitoylation of metabolic proteins. Front Physiol. 14:11228952023. View Article : Google Scholar : PubMed/NCBI | |
Fhu CW and Ali A: Protein lipidation by palmitoylation and myristoylation in cancer. Front Cell Dev Biol. 9:6736472021. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Li P, Li J, Zhao Q, Chang Y and He X: Protein lipidation in health and disease: Molecular basis, physiological function and pathological implication. Signal Transduct Target Ther. 9:602024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Yang W: Proteome-Scale analysis of protein S-acylation comes of age. J Proteome Res. 20:14–26. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu M, Jiang H, Tan M, Yu L, Xu N, Li Y, Wu H, Hou Q and Dai C: Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation. Nat Commun. 14:66822023. View Article : Google Scholar : PubMed/NCBI | |
Heakal Y, Woll MP, Fox T, Seaton K, Levenson R and Kester M: Neurotensin receptor-1 inducible palmitoylation is required for efficient receptor-mediated mitogenic-signaling within structured membrane microdomains. Cancer Biol Ther. 12:427–435. 2011. View Article : Google Scholar : PubMed/NCBI | |
Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B and King MR: Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. Elife. 10:e677502021. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Hao Q, Liang Y and Kong E: Protein palmitoylation in cancer: Molecular functions and therapeutic potential. Mol Oncol. 17:3–26. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Cao X, Chen Z, Lai B, Xi L, Zhang J, Zhu S, Qi S, Liang Y, Cao F, et al: Inhibiting S-palmitoylation arrests metastasis by relocating Rap2b from plasma membrane in colorectal cancer. Cell Death Dis. 15:6752024. View Article : Google Scholar : PubMed/NCBI | |
Barylko B, Mao YS, Wlodarski P, Jung G, Binns DD, Sun HQ, Yin HL and Albanesi JP: Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase II{alpha}. J Biol Chem. 284:9994–10003. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, Sun P, Wang Z, You Y, Zeng YX, et al: DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 12:58722021. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Han C, Miao X, Li X, Yin C, Zou J, Liu M, Li S, Stawski L, Zhu B, et al: Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads. Nat Commun. 10:8772019. View Article : Google Scholar : PubMed/NCBI | |
Jin Q, Qi D, Zhang M, Qu H, Dong Y, Sun M and Quan C: CLDN6 inhibits breast cancer growth and metastasis through SREBP1-mediated RAS palmitoylation. Cell Mol Biol Lett. 29:1122024. View Article : Google Scholar : PubMed/NCBI | |
Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, et al: Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med. 10:e83132018. View Article : Google Scholar : PubMed/NCBI | |
Sosa L, Petiti JP, Picech F, Chumpen S, Nicola JP, Perez P, De Paul A, Valdez-Taubas J, Gutierrez S and Torres AI: The ERα membrane pool modulates the proliferation of pituitary tumours. J Endocrinol. 240:229–241. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cuiffo B and Ren R: Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood. 115:3598–3605. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Zhang H, Meng J, Guo F, Ren D, Wu H and Jin X: S-palmitoylation of PCSK9 induces sorafenib resistance in liver cancer by activating the PI3K/AKT pathway. Cell Rep. 40:1111942022. View Article : Google Scholar : PubMed/NCBI | |
Sada R, Kimura H, Fukata Y, Fukata M, Yamamoto H and Kikuchi A: Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6. Sci Signal. 12:eaat95192019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Yang X, Wu J, Ye S, Gong J, Cheng WM, Luo Z, Yu J, Liu Y, Zeng W, et al: Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov. 9:262023. View Article : Google Scholar : PubMed/NCBI | |
Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, Jiang H, Yang B, Ying M, Cao J, et al: ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 10:1426–1439. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mo Y, Han Y, Chen Y, Fu C, Li Q, Liu Z, Xiao M and Xu B: ZDHHC20 mediated S-palmitoylation of fatty acid synthase (FASN) promotes hepatocarcinogenesis. Mol Cancer. 23:2742024. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhang L and Chen CW: Diverse roles of protein palmitoylation in cancer progression, immunity, stemness, and beyond. Cells. 12:22092023. View Article : Google Scholar : PubMed/NCBI | |
Gang X, Yan J, Li X, Shi S, Xu L, Liu R, Cai L, Li H and Zhao M: Immune checkpoint inhibitors rechallenge in non-small cell lung cancer: Current evidence and future directions. Cancer Lett. 604:2172412024. View Article : Google Scholar : PubMed/NCBI | |
De Martin E, Fulgenzi C, Celsa C, Laurent-Bellue A, Torkpour A, Lombardi P, D'Alessio A and Pinato DJ: Immune checkpoint inhibitors and the liver: Balancing therapeutic benefit and adverse events. Gut. 74:1165–1177. 2025. View Article : Google Scholar : PubMed/NCBI | |
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y and Li J: Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer. 1880:1892772025. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M and Xiang B: Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer. 23:1082024. View Article : Google Scholar : PubMed/NCBI | |
Bardhan K, Anagnostou T and Boussiotis VA: The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol. 7:5502016. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang HY, Tao X, Chen Z, Levental I and Lin X: Palmitoylation of PD-L1 regulates its membrane orientation and immune evasion. Langmuir. 41:5170–5178. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Ren C, Xiao R, Ma S, Liu H, Dou Y, Fan Y, Wang S, Zhan P, Gao C, et al: Palmitoylation of TIM-3 promotes immune exhaustion and restrains antitumor immunity. Sci Immunol. 9:eadp73022024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q and Long J: Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett. 588:2167582024. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, Lu H, Fang C, Zhang Y, Liang L, et al: Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 3:306–317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Zhao X, He Y, Zhang L, Zheng X, Qin X, Li K, Li J, Wang Y, Dai L and Li X: Posttranslational remodeling micelle reverses cell-surface and exosomal PD-L1 immunosuppression in tumors resistant to PD-L1 antibody therapy. J Control Release. 384:1139612025. View Article : Google Scholar : PubMed/NCBI | |
Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, et al: Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov. 10:4172024. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Tsang WY, Fang XN, Zhang Y, Luo J, Gong LQ, Zhang BF, Wong CN, Li ZH, Liu BL, et al: FASN inhibition decreases MHC-I degradation and synergizes with PD-L1 checkpoint blockade in hepatocellular carcinoma. Cancer Res. 84:855–871. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee TA, Tsai EY, Liu SH, Hsu Hung SD, Chang SJ, Chao CH, Lai YJ, Yamaguchi H and Li CW: Post-translational modification of PD-1: Potential targets for cancer immunotherapy. Cancer Res. 84:800–807. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Jiang P, Tang W, Wang Y, Qiu F, An J, Zheng Y, Wu D, Zhou J, Neculai D, et al: CPT1A induction following epigenetic perturbation promotes MAVS palmitoylation and activation to potentiate antitumor immunity. Mol Cell. 83:4370–4385.e9. 2023. View Article : Google Scholar : PubMed/NCBI | |
Du W, Hua F, Li X, Zhang J, Li S, Wang W, Zhou J, Wang W, Liao P, Yan Y, et al: Loss of optineurin drives cancer immune evasion via Palmitoylation-dependent IFNGR1 lysosomal sorting and degradation. Cancer Discov. 11:1826–1843. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tohumeken S, Baur R, Böttcher M, Stoll A, Loschinski R, Panagiotidis K, Braun M, Saul D, Völkl S, Baur AS, et al: Palmitoylated proteins on AML-Derived extracellular vesicles promote Myeloid-derived suppressor cell differentiation via TLR2/Akt/mTOR signaling. Cancer Res. 80:3663–3676. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Huang K, Guo H, Jia M, Sun Q, Chen X, Wu J, Yao Q, Zhang P, Vakal S, et al: Targeting ZDHHC9 potentiates anti-programmed death-ligand 1 immunotherapy of pancreatic cancer by modifying the tumor microenvironment. Biomed Pharmacother. 161:1145672023. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Wang J, Yu D, Zhang Q, Hu H, Xu M, Zhang H, Tian S, Zheng G, Lu D, et al: Benzosceptrin C induces lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting DHHC3. Cell Rep Med. 5:1013572024. View Article : Google Scholar : PubMed/NCBI | |
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C and Benitah SA: The role of lipids in cancer progression and metastasis. Cell Metab. 34:1675–1699. 2022. View Article : Google Scholar : PubMed/NCBI | |
Parton RG and Simons K: The biology of lipids. Cold Spring Harb Perspect Biol. 16:a0417132024. View Article : Google Scholar : PubMed/NCBI | |
Domingues N, Pires J, Milosevic I and Raimundo N: Role of lipids in interorganelle communication. Trends Cell Biol. 35:46–58. 2025. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y and Zhou H: Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr. 43:332–345. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ye L, Wen X, Qin J, Zhang X, Wang Y, Wang Z, Zhou T, Di Y and He W: Metabolism-regulated ferroptosis in cancer progression and therapy. Cell Death Dis. 15:1962024. View Article : Google Scholar : PubMed/NCBI | |
Tufail M, Jiang CH and Li N: Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol Cancer. 23:2032024. View Article : Google Scholar : PubMed/NCBI | |
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021. View Article : Google Scholar : PubMed/NCBI | |
Gu Q, Wang Y, Yi P and Cheng C: Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol. 108:48–70. 2025. View Article : Google Scholar : PubMed/NCBI | |
Ruan C, Meng Y and Song H: CD36: An emerging therapeutic target for cancer and its molecular mechanisms. J Cancer Res Clin Oncol. 148:1551–1558. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Chaudhary O, Rodríguez-Morales P, Sun X, Chen D, Zappasodi R, Xu Z, Pinto A, Williams A, Schulze I, et al: Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity. 54:1561–1577.e7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chao Z, Wang Q, Zou F, Song T, Xu L, Ning J and Cheng F: EXO1/P53/SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression. J Transl Med. 22:1042024. View Article : Google Scholar : PubMed/NCBI | |
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K and Yang JL: Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics. J Hematol Oncol. 16:1032023. View Article : Google Scholar : PubMed/NCBI | |
Fatima S, Hu X, Gong RH, Huang C, Chen M, Wong H, Bian Z and Kwan HY: Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 76:2547–2557. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Wang J, Kong W, Newton MA, Burkett WC, Sun W, Buckingham L, O'Donnell J, Suo H, Deng B, et al: Palmitic acid exerts Anti-tumorigenic activities by modulating cellular stress and lipid droplet formation in endometrial cancer. Biomolecules. 14:6012024. View Article : Google Scholar : PubMed/NCBI | |
Annevelink CE, Sapp PA, Petersen KS, Shearer GC and Kris-Etherton PM: Diet-derived and diet-related endogenously produced palmitic acid: Effects on metabolic regulation and cardiovascular disease risk. J Clin Lipidol. 17:577–586. 2023. View Article : Google Scholar : PubMed/NCBI | |
Murru E, Manca C, Carta G and Banni S: Impact of dietary palmitic acid on lipid metabolism. Front Nutr. 9:8616642022. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, et al: Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun. 15:82732024. View Article : Google Scholar : PubMed/NCBI | |
Jeong DW, Park JW, Kim KS, Kim J, Huh J, Seo J, Kim YL, Cho JY, Lee KW, Fukuda J, et al: Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma. Nat Commun. 14:63702023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Hao JW, Wang X, Guo H, Sun HH, Lai XY, Liu LY, Zhu M, Wang HY, Li YF, et al: DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell Rep. 26:209–221.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shan J, Li X, Sun R, Yao Y and Sun Y, Kuang Q, Dai X and Sun Y: Palmitoyltransferase ZDHHC6 promotes colon tumorigenesis by targeting PPARγ-driven lipid biosynthesis via regulating lipidome metabolic reprogramming. J Exp Clin Cancer Res. 43:2272024. View Article : Google Scholar : PubMed/NCBI | |
Qu M, Zhou X, Wang X and Li H: Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development. Int J Biol Sci. 17:4223–4237. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan JJ and Huang X: Ion channels in cancer: Orchestrators of electrical signaling and cellular crosstalk. Rev Physiol Biochem Pharmacol. 183:103–133. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Fu J and Wang H: Advancements in targeting ion channels for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel). 17:14622024. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Feng X, Liu Q, Liu S, Huang F and Xu H: The ion channels of endomembranes. Physiol Rev. 104:1335–1385. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shi Q, Yang Z, Yang H, Xu L, Xia J, Gu J, Chen M, Wang Y, Zhao X, Liao Z, et al: Targeting ion channels: Innovative approaches to combat cancer drug resistance. Theranostics. 15:521–545. 2025. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Sun R, Shi H, Chapman NM, Hu H, Guy C, Rankin S, Kc A, Palacios G, Meng X, et al: VDAC2 loss elicits tumour destruction and inflammation for cancer therapy. Nature. 640:1062–1071. 2025. View Article : Google Scholar : PubMed/NCBI | |
Sobradillo D, Hernández-Morales M, Ubierna D, Moyer MP, Núñez L and Villalobos C: A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells. J Biol Chem. 289:28765–28782. 2014. View Article : Google Scholar : PubMed/NCBI | |
Prevarskaya N, Skryma R and Shuba Y: Ion channels and the hallmarks of cancer. Trends Mol Med. 16:107–121. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, et al: Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther. 31:1611–1618. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ji R, Chang L, An C and Zhang J: Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: Implications for cancer. Front Cell Dev Biol. 12:13262312024. View Article : Google Scholar : PubMed/NCBI | |
Panda S, Chatterjee O, Roy L and Chatterjee S: Targeting Ca2+ signaling: A new arsenal against cancer. Drug Discov Today. 27:923–934. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao SH, Wang GZ, Wang LP, Feng L, Zhou YC, Yu XJ, Liang F, Yang FY, Wang Z, Sun BB, et al: Mutations and clinical significance of calcium voltage-gated channel subunit alpha 1E (CACNA1E) in non-small cell lung cancer. Cell Calcium. 102:1025272022. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D and Wu S: T-type Ca2+ channel expression in human esophageal carcinomas: A functional role in proliferation. Cell Calcium. 43:49–58. 2008. View Article : Google Scholar : PubMed/NCBI | |
Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB and Li M: Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 267:116–124. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Ren C, Liu J, Huang S, Wu C and Zhang J: Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today. 29:1039952024. View Article : Google Scholar : PubMed/NCBI | |
Banderali U, Jayanthan A, Hoeksema KA, Narendran A and Giles WR: Ion channels in pediatric CNS Atypical Teratoid/Rhabdoid Tumor (AT/RT) cells: Potential targets for novel therapeutic agents. J Neurooncol. 107:111–119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shipston MJ: Ion channel regulation by protein S-acylation. J Gen Physiol. 143:659–678. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Zhou X, Du H, Cloer EW, Zhang J, Mei L, Wang Y, Tan X, Hepperla AJ, Simon JM, et al: STING suppresses mitochondrial VDAC2 to govern RCC growth independent of innate immunity. Adv Sci (Weinh). 10:e22037182023. View Article : Google Scholar : PubMed/NCBI | |
Cassinelli S, Viñola-Renart C, Benavente-Garcia A, Navarro-Pérez M, Capera J and Felipe A: Palmitoylation of voltage-gated ion channels. Int J Mol Sci. 23:93572022. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhang C, Luo X, Wang P, Zhou W, Zhong S, Xie Y, Jiang Y, Yang P, Tang R, et al: CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis. J Hepatol. 69:705–717. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu J, Yu T, Lu F, Miao Q, Meng X, Xiao W, Yang H and Zhang X: ZDHHC9-mediated Bip/GRP78 S-palmitoylation inhibits unfolded protein response and promotes bladder cancer progression. Cancer Lett. 598:2171182024. View Article : Google Scholar : PubMed/NCBI | |
Jeyifous O, Lin EI, Chen X, Antinone SE, Mastro R, Drisdel R, Reese TS and Green WN: Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation. Proc Natl Acad Sci USA. 113:E8482–E8491. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chamberlain LH and Shipston MJ: The physiology of protein S-acylation. Physiol Rev. 95:341–376. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Que X, Wang S, Zhou Q, Xing X, Chen L, Hou C, Ma J, An P, Peng Y, et al: ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3-NEK7 interaction and inflammasome activation. Mol Cell. 83:4570–4585.e7. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gök C, Plain F, Robertson AD, Howie J, Baillie GS, Fraser NJ and Fuller W: Dynamic palmitoylation of the Sodium-calcium exchanger modulates its structure, affinity for Lipid-ordered domains, and inhibition by XIP. Cell Rep. 31:1076972020. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Sun Y, Niu J, Jarugumilli GK and Wu X: Protein lipidation in cell signaling and diseases: Function, regulation, and therapeutic opportunities. Cell Chem Biol. 25:817–831. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rebecca VW, Nicastri MC, Fennelly C, Chude CI, Barber-Rotenberg JS, Ronghe A, McAfee Q, McLaughlin NP, Zhang G, Goldman AR, et al: PPT1 Promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 9:220–229. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li H, Fan X, Zhao C, Ye K, Zhao Z, Hu L, Ma H, Wang H and Fang Z: Protein palmitoylation regulates cell survival by modulating XBP1 activity in glioblastoma multiforme. Mol Ther Oncolytics. 17:518–530. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Delalande C and Dickinson BC: Inhibitors of DHHC family proteins. Curr Opin Chem Biol. 65:118–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Qin T, An T, Wu H, Xu G, Xiang J, Lei K, Zhang S, Xia J, Su G, et al: Novel PORCN inhibitor WHN-88 targets Wnt/β-catenin pathway and prevents the growth of Wnt-driven cancers. Eur J Pharmacol. 945:1756282023. View Article : Google Scholar : PubMed/NCBI | |
Kharbanda A, Walter DM, Gudiel AA, Schek N, Feldser DM and Witze ES: Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Sci Signal. 13:eaax23642020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhang Y, Dong Y, Zi R, Wang Y, Chen Y, Liu C, Wang J, Wang X, Li J, et al: Non-alcoholic fatty liver disease promotes liver metastasis of colorectal cancer via fatty acid synthase dependent EGFR palmitoylation. Cell Death Discov. 10:412024. View Article : Google Scholar : PubMed/NCBI | |
Lemonidis K, Salaun C, Kouskou M, Diez-Ardanuy C, Chamberlain LH and Greaves J: Substrate selectivity in the zDHHC family of S-acyltransferases. Biochem Soc Trans. 45:751–758. 2017. View Article : Google Scholar : PubMed/NCBI | |
Balasubramanian A, Hsu AY, Ghimire L, Tahir M, Devant P, Fontana P, Du G, Liu X, Fabin D, Kambara H, et al: The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis. Sci Immunol. 9:eadn14522024. View Article : Google Scholar : PubMed/NCBI |