1
|
Slominski RM, Sarna T, Płonka PM, Raman C,
Brożyna AA and Slominski AT: Melanoma, melanin, and melanogenesis:
The Yin and Yang relationship. Front Oncol.
12(842496)2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Slominski A, Zmijewski MA and Pawelek J:
L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators
of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27.
2012.PubMed/NCBI View Article : Google Scholar
|
3
|
Slominski A, Tobin DJ, Shibahara S and
Wortsman J: Melanin pigmentation in mammalian skin and its hormonal
regulation. Physiol Rev. 84:1155–1228. 2004.PubMed/NCBI View Article : Google Scholar
|
4
|
Arnold M, Singh D, Laversanne M, Vignat J,
Vaccarella S, Meheus F, Cust AE, de Vries E, Whiteman DC and Bray
F: Global burden of cutaneous melanoma in 2020 and projections to
2040. JAMA Dermatol. 158:495–503. 2022.PubMed/NCBI View Article : Google Scholar
|
5
|
Roky AH, Islam MM, Ahasan AMF, Mostaq MS,
Mahmud MZ, Amin MN and Mahmud MA: Overview of skin cancer types and
prevalence rates across continents. Cancer Pathog Ther. 3:89–100.
2024.PubMed/NCBI View Article : Google Scholar
|
6
|
Ward WH, Lambreton F, Goel N, Yu JQ and
Farma JM: Clinical presentation and staging of melanoma. In:
Cutaneous Melanoma: Etiology and Therapy. Codon Publications,
pp79-89, 2017.
|
7
|
Kolathur KK, Nag R, Shenoy PV, Malik Y,
Varanasi SM, Angom RS and Mukhopadhyay D: Molecular susceptibility
and treatment challenges in melanoma. Cells.
13(1383)2024.PubMed/NCBI View Article : Google Scholar
|
8
|
Rizos H, Menzies AM, Pupo GM, Carlino MS,
Fung C, Hyman J, Haydu LE, Mijatov B, Becker TM, Boyd SC, et al:
BRAF inhibitor resistance mechanisms in metastatic melanoma:
Spectrum and clinical impact. Clin Cancer Res. 20:1965–1977.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Nebhan CA and Johnson DB: Pembrolizumab in
the adjuvant treatment of melanoma: Efficacy and safety. Expert Rev
Anticancer Ther. 21:583–590. 2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Luebker SA and Koepsell SA: Diverse
mechanisms of BRAF inhibitor resistance in melanoma identified in
clinical and preclinical studies. Front Oncol.
9(268)2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Saginala K and Barsouk A, Aluru JS, Rawla
P and Barsouk A: Epidemiology of melanoma. Med Sci (Basel).
9(63)2021.
|
12
|
Slominski RM, Kim TK, Janjetovic Z,
Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R,
Crossman DK, et al: Malignant melanoma: An overview, new
perspectives, and vitamin D signaling. Cancers (Basel).
16(2262)2024.PubMed/NCBI View Article : Google Scholar
|
13
|
Zamudio Díaz DF, Busch L, Kröger M, Klein
AL, Lohan SB, Mewes KR, Vierkotten L, Witzel C, Rohn S and Meinke
MC: Significance of melanin distribution in the epidermis for the
protective effect against UV light. Sci Rep.
14(3488)2024.PubMed/NCBI View Article : Google Scholar
|
14
|
Slominski RM, Chen JY, Raman C and
Slominski AT: Photo-neuro-immuno-endocrinology: How the ultraviolet
radiation regulates the body, brain, and immune system. Proc Natl
Acad Sci USA. 121(e2308374121)2024.PubMed/NCBI View Article : Google Scholar
|
15
|
Slominski AT, Zmijewski MA, Plonka PM,
Szaflarski JP and Paus R: How UV light touches the brain and
endocrine system through skin, and why. Endocrinology.
159:1992–2007. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Slominski RM, Raman C, Chen JY and
Slominski AT: How cancer hijacks the body's homeostasis through the
neuroendocrine system. Trends Neurosci. 46:263–275. 2023.PubMed/NCBI View Article : Google Scholar
|
17
|
Kim HJ and Kim YH: Molecular frontiers in
melanoma: Pathogenesis, diagnosis, and therapeutic advances. Int J
Mol Sci. 25(2984)2024.PubMed/NCBI View Article : Google Scholar
|
18
|
Strashilov S and Yordanov A: Aetiology and
pathogenesis of cutaneous melanoma: Current concepts and advances.
Int J Mol Sci. 22(6395)2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Fu M, Hu Y, Lan T, Guan KL, Luo T and Luo
M: The Hippo signalling pathway and its implications in human
health and diseases. Signal Transduct Target Ther.
7(376)2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhong Z, Jiao Z and Yu FX: The Hippo
signaling pathway in development and regeneration. Cell Rep.
43(113926)2024.PubMed/NCBI View Article : Google Scholar
|
21
|
Luo J, Deng L, Zou H, Guo Y, Tong T, Huang
M, Ling G and Li P: New insights into the ambivalent role of
YAP/TAZ in human cancers. J Exp Clin Cancer Res.
42(130)2023.PubMed/NCBI View Article : Google Scholar
|
22
|
Guo Y, Luo J, Zou H, Liu C, Deng L and Li
P: Context-dependent transcriptional regulations of YAP/TAZ in
cancer. Cancer Lett. 527:164–173. 2022.PubMed/NCBI View Article : Google Scholar
|
23
|
Piccolo S, Panciera T, Contessotto P and
Cordenonsi M: YAP/TAZ as master regulators in cancer: Modulation,
function and therapeutic approaches. Nat Cancer. 4:9–26.
2023.PubMed/NCBI View Article : Google Scholar
|
24
|
Leask A, Nguyen J, Naik A, Chitturi P and
Riser BL: The role of yes activated protein (YAP) in melanoma
metastasis. iScience. 27(109864)2024.PubMed/NCBI View Article : Google Scholar
|
25
|
Lui JW, Moore SPG, Huang L, Ogomori K, Li
Y and Lang D: YAP facilitates melanoma migration through regulation
of actin-related protein 2/3 complex subunit 5 (ARPC5). Pigment
Cell Melanoma Res. 35:52–65. 2022.PubMed/NCBI View Article : Google Scholar
|
26
|
Kazimierczak U, Przybyla A, Smielowska M,
Kolenda T and Mackiewicz A: Targeting the Hippo pathway in
cutaneous melanoma. Cells. 13(1062)2024.PubMed/NCBI View Article : Google Scholar
|
27
|
Ryu HJ, Kim C, Jang H, Kim SI, Shin SJ,
Chung KY, Torres-Cabala C and Kim SK: Nuclear localization of
yes-associated protein is associated with tumor progression in
cutaneous melanoma. Lab Invest. 104(102048)2024.PubMed/NCBI View Article : Google Scholar
|
28
|
Park S, Ryu WJ, Kim TY, Hwang Y, Han HJ,
Lee JD, Kim GM, Sohn J, Kim SK, Kim MH and Kim J: Overcoming BRAF
and CDK4/6 inhibitor resistance by inhibiting MAP3K3-dependent
protection against YAP lysosomal degradation. Exp Mol Med.
56:987–1000. 2024.PubMed/NCBI View Article : Google Scholar
|
29
|
Heinemann A, Cullinane C, De Paoli-Iseppi
R, Wilmott JS, Gunatilake D, Madore J, Strbenac D, Yang JY,
Gowrishankar K, Tiffen JC, et al: Combining BET and HDAC inhibitors
synergistically induces apoptosis of melanoma and suppresses AKT
and YAP signaling. Oncotarget. 6:21507–21521. 2015.PubMed/NCBI View Article : Google Scholar
|
30
|
Peters MDJ, Godfrey C, McInerney P, Munn
Z, Tricco AC and Khalil H: Scoping reviews. In: JBI Manual for
Evidence Synthesis. Aromataris E, Lockwood C, Porritt K, Pilla B
and Jordan Z (eds). JBI, 2024. Available from: https://synthesismanual.jbi.global. https://doi.org/10.46658/JBIMES-24-09.
|
31
|
Tricco AC, Lillie E, Zarin W, O'Brien KK,
Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, et
al: PRISMA extension for scoping reviews (PRISMA-ScR): Checklist
and explanation. Ann Intern Med. 169:467–473. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron
I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan
SE, et al: The PRISMA 2020 statement: An updated guideline for
reporting systematic reviews. BMJ. 372(n71)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Kazimierczak U, Dondajewska E,
Zajaczkowska M, Karwacka M, Kolenda T and Mackiewicz A: LATS1 is a
mediator of melanogenesis in response to oxidative stress and
regulator of melanoma growth. Int J Mol Sci.
22(3108)2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Feng R, Gong J, Wu L, Wang L, Zhang B,
Liang G, Zheng H and Xiao H: MAPK and Hippo signaling pathways
crosstalk via the RAF-1/MST-2 interaction in malignant melanoma.
Oncol Rep. 38:1199–1205. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Lüönd F, Pirkl M, Hisano M, Prestigiacomo
V, Kalathur RK, Beerenwinkel N and Christofori G: Hierarchy of
TGFβ/SMAD, Hippo/YAP/TAZ, and Wnt/β-catenin signaling in melanoma
phenotype switching. Life Sci Alliance.
5(e202101010)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Waaler J, Mygland L, Tveita A, Strand MF,
Solberg NT, Olsen PA, Aizenshtadt A, Fauskanger M, Lund K, Brinch
SA, et al: Tankyrase inhibition sensitizes melanoma to PD-1 immune
checkpoint blockade in syngeneic mouse models. Commun Biol.
3(196)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Koo JH, Plouffe SW, Meng Z, Lee DH, Yang
D, Lim DS, Wang CY and Guan KL: Induction of AP-1 by YAP/TAZ
contributes to cell proliferation and organ growth. Genes Dev.
34:72–86. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Kim G, Bhattarai PY, Lim SC, Lee KY and
Choi HS: Sirtuin 5-mediated deacetylation of TAZ at K54 promotes
melanoma development. Cell Oncol (Dordr). 47:967–985.
2024.PubMed/NCBI View Article : Google Scholar
|
39
|
Miskolczi Z, Smith MP, Rowling EJ,
Ferguson J, Barriuso J and Wellbrock C: Collagen abundance controls
melanoma phenotypes through lineage-specific microenvironment
sensing. Oncogene. 37:3166–3182. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Kim MH and Kim J, Hong H, Lee S, Lee J,
Jung E and Kim J: Actin remodeling confers BRAF inhibitor
resistance to melanoma cells through YAP/TAZ activation. EMBO J.
35:462–478. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Kang J, Wang J, Yao Z, Hu Y, Ma S, Fan Q,
Gao F, Sun Y and Sun J: Fascin induces melanoma tumorigenesis and
stemness through regulating the Hippo pathway. Cell Commun Signal.
16(37)2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Xiao Y, Zhou L, Andl T and Zhang Y: YAP1
controls the N-cadherin-mediated tumor-stroma interaction in
melanoma progression. Oncogene. 43:884–898. 2024.PubMed/NCBI View Article : Google Scholar
|
43
|
Yuan H, Liu H, Liu Z, Zhu D, Amos CI, Fang
S, Lee JE and Wei Q: Genetic variants in Hippo pathway genes YAP1,
TEAD1 and TEAD4 are associated with melanoma-specific survival. Int
J Cancer. 137:638–645. 2015.PubMed/NCBI View Article : Google Scholar
|
44
|
Mou K, Ding M, Han D, Zhou Y, Mu X, Liu W
and Wang L: miR-590-5p inhibits tumor growth in malignant melanoma
by suppressing YAP1 expression. Oncol Rep. 40:2056–2066.
2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Mou K, Liu B, Ding M, Mu X, Han D, Zhou Y
and Wang LJ: lncRNA-ATB functions as a competing endogenous RNA to
promote YAP1 by sponging miR-590-5p in malignant melanoma. Int J
Oncol. 53:1094–1104. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Choe MH, Yoon Y, Kim J, Hwang SG, Han YH
and Kim JS: miR-550a-3-5p acts as a tumor suppressor and reverses
BRAF inhibitor resistance through the direct targeting of YAP. Cell
Death Dis. 9(640)2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Luo C, Balsa E, Perry EA, Liang J, Tavares
CD, Vazquez F, Widlund HR and Puigserver P: H3K27me3-mediated PGC1α
gene silencing promotes melanoma invasion through WNT5A and YAP. J
Clin Invest. 130:853–862. 2020.PubMed/NCBI View Article : Google Scholar
|
48
|
Kim G, Bhattarai PY, Lim SC, Kim JY and
Choi HS: PIN1 facilitates ubiquitin-mediated degradation of
serine/threonine kinase 3 and promotes melanoma development via TAZ
activation. Cancer Lett. 499:164–174. 2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Zhang X, Yang L, Szeto P, Abali GK, Zhang
Y, Kulkarni A, Amarasinghe K, Li J, Vergara IA, Molania R, et al:
The Hippo pathway oncoprotein YAP promotes melanoma cell invasion
and spontaneous metastasis. Oncogene. 39:5267–5281. 2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Feng Q, Guo P, Kang S and Zhao F: High
expression of TAZ/YAP promotes the progression of malignant
melanoma and affects the postoperative survival of patients.
Pharmazie. 73:662–665. 2018.PubMed/NCBI View Article : Google Scholar
|
51
|
Nallet-Staub F, Marsaud V, Li L, Gilbert
C, Dodier S, Bataille V, Sudol M, Herlyn M and Mauviel A:
Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in
cutaneous melanoma. J Invest Dermatol. 134:123–132. 2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Xiong H, Yu Q, Gong Y, Chen W, Tong Y,
Wang Y, Xu H and Shi Y: Yes-associated protein (YAP) promotes
tumorigenesis in melanoma cells through stimulation of low-density
lipoprotein receptor-related protein 1 (LRP1). Sci Rep.
7(15528)2017.PubMed/NCBI View Article : Google Scholar
|
53
|
Lamar JM, Stern P, Liu H, Schindler JW,
Jiang ZG and Hynes RO: The Hippo pathway target, YAP, promotes
metastasis through its TEAD-interaction domain. Proc Natl Acad Sci
USA. 109:E2441–E2450. 2012.PubMed/NCBI View Article : Google Scholar
|
54
|
Stampouloglou E, Cheng N, Federico A,
Slaby E, Monti S, Szeto GL and Varelas X: Yap suppresses T-cell
function and infiltration in the tumor microenvironment. PLoS Biol.
18(e3000591)2020.PubMed/NCBI View Article : Google Scholar
|
55
|
Hugo W, Shi H, Sun L, Piva M, Song C, Kong
X, Moriceau G, Hong A, Dahlman KB, Johnson DB, et al: Non-genomic
and immune evolution of melanoma acquiring MAPKi resistance. Cell.
162:1271–1285. 2015.PubMed/NCBI View Article : Google Scholar
|
56
|
Kim MH, Kim CG, Kim SK, Shin SJ, Choe EA,
Park SH, Shin EC and Kim J: YAP-induced PD-L1 expression drives
immune evasion in BRAFi-resistant melanoma. Cancer Immunol Res.
6:255–266. 2018.PubMed/NCBI View Article : Google Scholar
|
57
|
Ma Y, Wang L, He F, Yang J, Ding Y, Ge S,
Fan X, Zhou Y, Xu X and Jia R: LACTB suppresses melanoma
progression by attenuating PP1A and YAP interaction. Cancer Lett.
506:67–82. 2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Caron JM, Han X, Contois L, Vary CPH and
Brooks PC: The HU177 collagen epitope controls melanoma cell
migration and experimental metastasis by a CDK5/YAP-dependent
mechanism. Am J Pathol. 188:2356–2368. 2018.PubMed/NCBI View Article : Google Scholar
|
59
|
Zhao B, Xie J, Zhou X, Zhang L, Cheng X
and Liang C: YAP activation in melanoma contributes to anoikis
resistance and metastasis. Exp Biol Med (Maywood). 246:888–896.
2021.PubMed/NCBI View Article : Google Scholar
|
60
|
Sanchez IM and Aplin AE: Hippo: Hungry,
hungry for melanoma invasion. J Invest Dermatol. 134:14–16.
2014.PubMed/NCBI View Article : Google Scholar
|
61
|
Hajimoradi Javarsiani M, Sajedianfard J
and Haghjooy Javanmard S: The effects of metformin on the hippo
pathway in the proliferation of melanoma cancer cells: A
preclinical study. Arch Physiol Biochem. 128:1150–1155.
2022.PubMed/NCBI View Article : Google Scholar
|
62
|
Dieter SM, Lovecchio D, Pataskar A, Zowada
MK, Körner PR, Khalizieva A, van Tellingen O, Jäger D, Glimm H and
Agami R: Suppression of heparan sulfation re-sensitizes YAP1-driven
melanoma to MAPK pathway inhibitors. Oncogene. 41:3953–3968.
2022.PubMed/NCBI View Article : Google Scholar
|
63
|
Misek SA, Newbury PA, Chekalin E,
Paithankar S, Doseff AI, Chen B, Gallo KA and Neubig RR: Ibrutinib
blocks YAP1 activation and reverses BRAF inhibitor resistance in
melanoma cells. Mol Pharmacol. 101:1–12. 2022.PubMed/NCBI View Article : Google Scholar
|
64
|
Misek SA, Appleton KM, Dexheimer TS,
Lisabeth EM, Lo RS, Larsen SD, Gallo KA and Neubig RR: Rho-mediated
signaling promotes BRAF inhibitor resistance in de-differentiated
melanoma cells. Oncogene. 39:1466–1483. 2020.PubMed/NCBI View Article : Google Scholar
|
65
|
Feldker N, Ferrazzi F, Schuhwerk H,
Widholz SA, Guenther K, Frisch I, Jakob K, Kleemann J, Riegel D,
Bönisch U, et al: Genome-wide cooperation of EMT transcription
factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J.
39(e103209)2020.PubMed/NCBI View Article : Google Scholar
|
66
|
Lee C, Jeong S, Jang C, Bae H, Kim YH,
Park I, Kim SK and Koh GY: Tumor metastasis to lymph nodes requires
YAP-dependent metabolic adaptation. Science. 363:644–649.
2019.PubMed/NCBI View Article : Google Scholar
|
67
|
Lin L, Sabnis AJ, Chan E, Olivas V, Cade
L, Pazarentzos E, Asthana S, Neel D, Yan JJ, Lu X, et al: The Hippo
effector YAP promotes resistance to RAF- and MEK-targeted cancer
therapies. Nat Genet. 47:250–256. 2015.PubMed/NCBI View Article : Google Scholar
|
68
|
Yang CE, Lee WY, Cheng HW, Chung CH, Mi FL
and Lin CW: The antipsychotic chlorpromazine suppresses YAP
signaling, stemness properties, and drug resistance in breast
cancer cells. Chem Biol Interact. 302:28–35. 2019.PubMed/NCBI View Article : Google Scholar
|
69
|
Li X, Zhuo S, Zhuang T, Cho YS, Wu G, Liu
Y, Mu K, Zhang K, Su P, Yang Y, et al: YAP inhibits ERα and
ER+ breast cancer growth by disrupting a TEAD-ERα
signaling axis. Nat Commun. 13(3075)2022.PubMed/NCBI View Article : Google Scholar
|
70
|
Li X, Cho YS, Zhu J, Zhuo S and Jiang J:
The Hippo pathway effector YAP inhibits HIF2 signaling and ccRCC
tumor growth. Cell Discov. 8(103)2022.PubMed/NCBI View Article : Google Scholar
|
71
|
Wang XW, Yang ZY, Li T, Zhao XR, Li XZ and
Wang XX: Verteporfin exerts anticancer effects and reverses
resistance to paclitaxel via inducing ferroptosis in esophageal
squamous cell cancer cells. Mol Biotechnol. 66:2558–2568.
2024.PubMed/NCBI View Article : Google Scholar
|
72
|
Jeong SB, Das R, Kim DH, Lee S, Oh HI, Jo
S, Lee Y, Kim J, Park S, Choi DK, et al: Anticancer effect of
verteporfin on non-small cell lung cancer via downregulation of
ANO1. Biomed Pharmacother. 153(113373)2022.PubMed/NCBI View Article : Google Scholar
|
73
|
Pearson JD, Huang K, Pacal M, McCurdy SR,
Lu S, Aubry A, Yu T, Wadosky KM, Zhang L, Wang T, et al: Binary
pan-cancer classes with distinct vulnerabilities defined by pro- or
anti-cancer YAP/TEAD activity. Cancer Cell. 39:1115–1134.e12.
2021.PubMed/NCBI View Article : Google Scholar
|
74
|
Saini H, Sharma H, Mukherjee S, Chowdhury
S and Chowdhury R: Verteporfin disrupts multiple steps of autophagy
and regulates p53 to sensitize osteosarcoma cells. Cancer Cell Int.
21(52)2021.PubMed/NCBI View Article : Google Scholar
|
75
|
Zhang X, Zhao H, Li Y, Xia D, Yang L, Ma Y
and Li H: The role of YAP/TAZ activity in cancer metabolic
reprogramming. Mol Cancer. 17(134)2018.PubMed/NCBI View Article : Google Scholar
|
76
|
Sanjaya A, Goenawan H, Setiawan I, Gunadi
JW, Limyati Y and Lesmana R: Elaborating the physiological role of
YAP as a glucose metabolism regulator: A systematic review. Cell
Physiol Biochem. 55:193–205. 2021.PubMed/NCBI View Article : Google Scholar
|
77
|
Sun X, Ma Z, Guo Q, Zhao Z and Liu L:
Ibrutinib-related skin cancer: A pharmacovigilance study from the
food and drug administration adverse event reporting system. Eur J
Cancer. 160:277–278. 2022.PubMed/NCBI View Article : Google Scholar
|
78
|
Baroja I, Kyriakidis NC, Halder G and Moya
IM: Expected and unexpected effects after systemic inhibition of
Hippo transcriptional output in cancer. Nat Commun.
15(2700)2024.PubMed/NCBI View Article : Google Scholar
|